Vascular disease and atherosclerosis in uremia

G. M. London
Manhes Hospital, Fleury-Merogis, and Broussais Hôpital, Paris, France.

SUMMARY

Epidemiological and clinical studies have shown that cardiovascular disease in patients with end-stage renal disease (ESRD) is frequently related to damage of large conduit arteries. Arterial disease is responsible for the high incidence of ischemic heart disease, peripheral artery diseases, left ventricular hypertrophy and congestive heart failure. The vascular complications in ESRD are due to two different but associated mechanisms, namely atherosclerosis and arteriosclerosis. Whereas the former principally affects the conduit function with ischemic lesions being the most characteristic consequence, the latter primarily disturbs the cushioning function of large arteries. Arteriosclerosis in ESRD patients is characterized by diffuse dilation and hypertrophy of large conduit arteries and stiffening of arterial walls, and represents a clinical form of an accelerated aging process. The main clinical characteristics of arterial stiffening are changes in blood pressure with isolated increase in systolic pressure and normal or lower diastolic pressure. The consequences of these alterations are: i) an increased LV afterload with development of LV hypertrophy and increased myocardial oxygen demand, and ii) altered coronary perfusion and subendocardial blood flow distribution. Epidemiological studies have identified arterial remodeling and stiffening as independent predictors of overall and cardiac mortality in ESRD patients.

Key words: End stage renal disease. Cardiovascular disease.

ENFERMEDAD VASCULAR Y ATEROSCLEROSIS EN LA UREMIA

RESUMEN

Estudios clínicos y epidemiológicos han demostrado que la enfermedad cardiovascular en los pacientes con enfermedad renal crónica terminal (ERCT) está relacionada con lesiones de los grandes vasos. La enfermedad arterial es responsable de cardiopatía isquémica, arteriopatía crónica periférica, hipertrofia ventricular izquierda e insuficiencia cardiaca congestiva. Las complicaciones vasculares de la ERCT son secundarias a dos mecanismos distintos pero asociados; se trata de la ateroesclerosis y de la arterioesclerosis. El primer mecanismo afecta la conducción del flujo sanguíneo siendo las lesiones isquémicas las principales consecuencias, el segundo altera la función amortiguadora del pulso por las arterias de gran tamaño. La arterioesclerosis en la ERCT se caracteriza por la dilatación difusa y la hipertrofia de arterias de gran tamaño así como por la rigidez arterial y representa...
INTRODUCTION

Cardiovascular disease is a major cause of morbidity and mortality in patients with end-stage renal disease (ESRD)\(^1\). While the most frequent underlying cause of these complications is atherosclerosis characterized by the presence of plaques and occlusive lesions\(^2-5\), the spectrum of arterial alterations includes structural changes whose alterations concern principally the viscoelastic properties of large arteries.

ARTERIAL FUNCTIONS

The arteries have two distinct, interrelated functions: 1) to deliver an adequate supply of blood to peripheral tissues —the conduit function, and 2) to smooth out pressure oscillations due to intermittent ventricular ejection —the cushioning function\(^6\).

Conduit Function

The conduit function, i.e., the capacity to transfer blood from the left ventricle to peripheral organs (arterial conductance), is related to the width of the arteries and the almost constancy of mean blood pressure along the arterial tree. This function is efficient, since in conditions of increased demand the blood flow can increase 5 to 8 times over the baseline value. Alterations in conduit function can be functional (endothelium-dependent vasodilatation is limited in hypertension, cardiac failure, hypercholesterolemia, smoking) or due to structural remodeling. The principal alterations of conduit function occur through narrowing or occlusion of arteries with restriction of blood flow and resulting ischemia or infarction of tissues downstream. Atherosclerosis characterized by the presence of plaques is the most common disease that disturbs conduit function.

Atherosclerosis is primarily an intimal disease, focal and patchy in its distribution. Mechanisms of atherogenesis are complex, including lipid disturbances, thrombogenesis, production of vasoactive substances and growth factors and mediators of inflammation. Atherogenesis depends also on mechanical factors such as alterations in shear stress, with predilection of plaques for sites characterized by disturbances of flow pattern and shear stress, like orifices, bifurcations, bending and pronounced arterial tapering.

Dampening function of Arteries

The second role of arteries is to dampen the and flow pressure oscillations resulting from intermittent ventricular ejection. Arteries can accommodate the volume of blood ejected from the heart, storing part of the volume during systole and draining this volume during diastole, thereby ensuring continuous perfusion of organs and tissues. The efficiency of dampening function depends on viscoelastic properties of arterial walls (expressed in term of compliance, distensibility, or incremental elastic modulus) and their «geometric» characteristics including their diameter and length\(^6\).

The principal alteration in cushioning function is due to the stiffening of arterial walls (i.e. decrease in compliance or distensibility, or increase in elastic modulus), with increase in systolic and pulse pressure as the principal consequences\(^7\). Two mechanisms are involved. The first involves the generation of a higher pressure wave by the left ventricle ejecting into a stiff arterial system, and a higher velocity (PWV —pulse wave velocity increases with the stiffening) at which is the pressure wave propagated forward (incident wave) to other arteries\(^6,8\). The second mechanism is indirect via the influence of increased arterial stiffness and PWV on the timing of incident and reflected pressure waves\(^8\). Indeed, the incident wave is reflected at any points of structural and func-
The arterial alterations in ESRD are heterogeneous and associates atherosclerosis (development of plaques) and remodeling associated with ageing (arteriosclerosis) and hemodynamic alterations. Atherosclerosis and arterial occlusive lesions are the most frequent causes of cardiovascular morbidity in patients on renal replacement. Occlusive lesions principally involve the medium-sized conduit arteries, and coronary insufficiency, peripheral artery disease, and cerebrovascular events occupy an important place in the mortality of these patients. The high incidence of atherosclerosis-related complications led Lindner, et al. to hypothesize that atherogenesis is accelerated in chronic hemodialysis patients. However, it remains a matter of debate whether or not the atherogenesis of dialysis patients is accelerated and whether or not the nature of atherosclerotic plaques is similar in hemodialysis patients and the general population. Ultrasonographic studies have shown a much higher prevalence of calcified plaques in ESRD patients than in age-matched controls in whom soft plaques are more frequent. While ESRD produces atherogenic factors essentially unique to uremia, including dyslipidemia, calcium-phosphate alterations, malnutrition and activation of cytokines and inflammatory mediators. Arteriosclerosis, is typically observed in conditions of arterial medialcalciosis. Atherosclerosis and arteriosclerosis are frequently comorbid, and in ESRD patients the extent of calcifications and the degree of arterial stiffening are independent predictors of mortality. The pathophysiology of calcifications are complex with hyperphosphatemia-associated treatments (aluminum and calcium phosphate binders) and PTH oversuppression (parathyroidectomy) playing a significant role. Metal-free, calcium-free phosphate binders such as sevelamer could favor the presence of plaque calcification. The factors specific for ESRD are additive to the number of risk factors observed in subjects with preserved renal function, such as age, hypertension, smoking, diabetes, male gender, and insulin resistance. Many hemodialysis patients already have significant vascular lesions before initiating dialysis and, in many patients, especially older patients, the generalized atherosclerosis can be the primary cause of renal failure. Hypertension is a frequent complication in ESRD, and an association between high BP and occlusive arterial lesions was found in chronic hemodialysis patients. Arterial system in patients with ESRD undergoes structural remodeling which is in many aspects similar to ageing and are characterized by dilation, hypertrophy, and stiffening of the aorta and major arteries. Although large part of the arterial alterations are associated with alterations in hemodynamic factors, non-hemodynamic factors more or less specific to ESRD could play an important role. Chronic increase in blood flow induces dilation of arterial luminal area and wall hypertrophy. In ESRD patients, conditions such as anemia, arteriovenous shunts and overhydration induce a state of chronic volume/flow overload associated with increased systemic and regional blood flow and flow velocity, creating conditions for systemic arterial remodeling. This has been illustrated by cross sectional studies which showed a direct relationship between the diameter of the aorta and of major arteries and blood flow velocity, as well as by studies indicating that arterial enlargement could be limited by adequate fluid removal during dialysis. Even in the absence of blood pressure changes, the increase in arterial radius is responsible for augmentation of tensile stress (Laplace’s law) that induces activation of hypertrophic process.
In comparison with blood pressure and age-matched non-uremic patients, the intima-media thickness of major central arteries is increased in ESRD patients. The increased intima-media thickness is associated with decreased arterial distensibility, increased PWV, and early return of wave reflections. In essential hypertensive patients, decreased arterial distensibility is primarily due to higher distending blood pressure rather than to arterial wall thickening and structural modifications. In ESRD patients arterial distensibility is decreased in comparison to age- and blood pressure-matched non-uremic population, and is proportional to arterial wall hypertrophy. In ESRD patients arterial hypertrophy is accompanied by alterations of the intrinsic elastic properties of arterial walls (increased Einc). This modification affects elastic and muscular type arteries, including arteries free of atherosclerosis, like the radial artery. The observation that the incremental modulus of elasticity was increased in ESRD patients more strongly favors altered intrinsic elastic properties or major architectural abnormalities like those seen in experimental uremia and the arteries of uremic patients. The nature of these qualitative changes remains to be precisely determined, but several alterations, namely fibroelastic intimal thickening, calcification of elastic lamellae and ground substance deposition are classically observed in these patients. The factors associated with these alterations are not precisely identified, but endothelin, parathyroid hormone and chronic inflammatory conditions seem to play an important role.

CONSEQUENCES OF ARTERIAL REMODELING

Arterial stiffening results are increased systolic and pulse pressures, and due to early wave reflections abnormal increase in aortic and left ventricular systolic pressure. The principal consequence of these alterations is left ventricular hypertrophy. Among ESRD patients, significant relations existed between comparable cardiac and vascular parameters and significant correlations were observed between the common carotid artery intima-media thickness and intima-media cross-sectional area and LV wall thickness and/or LV mass. The second important consequence of arterial stiffness is compromised coronary perfusion. Cardiac ischemia and alterations in subendocardial perfusion are frequently observed in uremic patients despite patent coronary arteries.

In the past, the clinical consequences of arterial stiffening on cardiovascular structure and function have been poorly evaluated. Blacher, et al. applied logistic regression and Cox analyse to the characteristics of a cohort of 241 subjects with ESRD and were able to identify increased aortic PWV as a significant independent predictor of cardiovascular and all-cause mortality. PWV is a complex parameter integrating arterial geometry and intrinsic elastic properties described by Moens-Korteweg equation $PWV^2 = Eh/2r$, where E is the elastic modulus (E_{inc}), r is the radius, h is the wall thickness. Blacher, et al. have shown that the principal factors associated with the aortic PWV as a predictor of cardiovascular and all-cause mortality in ESRD were the elastic modulus and dilatation of arteries.

CONCLUSIONS

The principal pathophysiological consequence of vascular alterations in ESRD is decreased arterial distensibility and increased PWV with early wave reflections whose principal clinical consequences are: increased systolic and pulse pressures, LV hypertrophy and altered coronary circulation. In the absence of controlled studies, it is difficult to propose therapeutical interventions aimed to prevent or treat arterial abnormalities. It is only during recent years that a small number of controlled studies have been conducted which were aimed at examining the effect of antihypertensive drugs on the function of large arteries. It has been shown that long-term administration of either calcium channel blocker nitrendipine, or the ACE inhibitor perindopril led to a decrease in pulse wave velocity and arterial wave reflections, indicative of an improvement of vessel wall elasticity. Nevertheless, these studies did not conclude whether the improvement of elastic properties were due only to decrease in blood pressure or to alterations in intrinsic properties of arterial walls.

ACKNOWLEDGMENTS

This work was supported by GEPIR (Groupe d'Etude de Physiopathologie de l’Insuffisance Rénale), and UMIF (Union des Mutuelles de L’île-de-France).

REFERENCES

dialysis patients: evidence of high levels of atherosclerotic le-

5. Savage T, Clarke AL, Giles M, Tomson CRV, Raine AEG: Cal-
cified plaque is common in the carotid and femoral arteries of

6. Nichols WW, O'Rourke MF: Vascular impedance. En: Mc-
Donald's blood flow in arteries: theoretical, experimental and

7. London GM, Guérin AP, Pannier B, Marchais SJ, Benetos A,
Safar ME: Increased systolic pressure in chronic uremia: Role

8. Nichols WW, Avolio AP, Kelly RP, O'Rourke MF: Effects of
age and of hypertension on wave travel and reflections. En:
Arterial vasodilatation: mechanisms and therapy (ed. M. O'-
Rourke, M. Salar, and V. Dzau), p. 23-40, Edward Arnold,

9. O'Rourke MF, Kelly RP: Wave reflections in systemic circu-
lation and its implications in ventricular function. J Hyper-
tension 11, 327-337, 1993.

10. Watanabe H, Ohtsuka S, Kakihana M, Sugishita Y: Coronary
circulation in dogs with an experimental decrease in aortic

11. Chang KC, Tseng YZ, Kuo TS, Chen HI: Impaired left ventri-
cular relaxation and arterial stiffness in patients with essen-

cimetiere P: Pulse pressure: a predictor of long-term cardio-
vascular mortality in a French male population. Hypertension

13. Guérin AP, London GM, Marchais SJ, Métivier F: Arterial stif-
fering and vascular calcifications in end-stage renal disease.

14. Barenbrock M, Spieker C, Laske V, Baumgart P, Hoeks APG,
Metivier F, London AM, Chedid K: Aortic and large artery
compliance in end-stage renal failure. Kidney Int 37: 137-42,
1990.

15. Blacher J, Pannier B, Guerin AP, Marchais SJ, Safar ME, Lon-
don GM: Increased stiffness of radial artery wall mate-
rial in end-stage renal disease. Hypertension 30: 1425-

16. Barenbrock M, Hausberg M, Kosch M, Kisters K, Hoeks APG,
Rahn KH: Effect of hyperparathyroidism on arterial distensi-
bility in renal transplant recipients. Kidney Int 54: 210-15,
1998.

17. Marchais SJ, Guérin AP, Pannier BM, Lévy BI, Safar ME, Lon-
don GM: Wave reflections and cardiac hypertrophy in chro-
nic uremia: influence of body size. Hypertension 22: 876-83,
1993.

Shoji T, Tahata T, Inoue T, Mori H: High-resolution B-mode
ultrasonography in evaluation of atherosclerosis in uremia.

19. London GM, Marchais SJ, Safar ME, Genest AF, Guerin AP,
Metivier F, London AM, Chedid K: Aortic and large artery
compliance in end-stage renal failure. Kidney Int 37: 137-42,
1990.

20. Barenbrock M, Spieker C, Laske V, Baumgart P, Hoeks APG,
Zidek W, Rahn KH: Effect of long-term hemodialysis on arte-
rional compliance in end-stage renal failure. Nephron 65: 249-

21. Laurent S, Girerd X, Mourad JJ, Lacolley P, Beck L, Bou-
touyrie P, Mégout J-P, Safar M: Elastic modulus of the ra-
dial artery wall material is not increased in patients with
essential hypertension. Arterioscler Thromb 14: 1223-1231,
1994.

22. Mourad JJ, Girerd X, Boutouyrie P, Laurent S, Safar ME, Lon-
don GM: Increased stiffness of radial artery wall mate-
rial in end-stage renal disease. Hypertension 30: 1425-

23. Ikels LS, Allfrey AL, Huffer WF, Craswell PW, Anderson JT,
Weil R: Arterial calcification and pathology in uremic patients

ges of vascular architecture independent of blood pressure in

ME, London GM: Endothelin and cardiovascular remodelling
in end-stage renal disease. Nephrol Dial Transplant 13: 375-
81, 1998.

26. Barenbrock M, Hausberg M, Kosch M, Kisters K, Hoeks APG,
Rahn KH: Effect of hyperparathyroidism on arterial distensi-
bility in renal transplant recipients. Kidney Int 54: 210-15,
1998.

27. Marchais SJ, Guérin AP, Pannier BM, Lévy BI, Safar ME, Lon-
don GM: Wave reflections and cardiac hypertrophy in chro-
nic uremia: influence of body size. Hypertension 22: 876-83,
1993.

28. Rostand RG, Kirk KA, Rutsky EA: Dialysis ischemic heart di-
sease: insight from coronary angiography. Kidney Int 25: 653-

29. Blacher J, Guérin AP, Pannier B, Marchais SJ, Safar ME, Lon-
don GM: Impact of aortic stiffness on survival in end-stage

30. Blacher J, Pannier B, Guerin AP, Marchais SJ, Safar ME, Lon-
don GM: Cautious arterial stiffness as a predictor of cardio-
vascular and all-cause mortality in end-stage renal disease.