2013 IMPACT FACTOR: 1.442

Nefrología Suplemento Extraordinario 2009;29(5):41-50 | Doi. 10.3265/NEFROLOGIA.2009.29.S.E.noID.35.free
El fósforo y sus implicaciones clínicas

Enviado a Revisar: 21 Dic. 2009 | Aceptado el: 21 Dic. 2009  | En Publicación: 28 Ene. 2010
Isabel Martínez Fernández, R. Saracho
Servicio de Nefrología. Hospital Galdakao. Galdakao, Vizcaya (España)
Correspondencia para Isabel Martínez Fernández, Servicio de Nefrología, Hospital Galdakao, Galdakao, Vizcaya, España
E-mail: isabel.martinezfernandez@osakidetza.net
Figura 1
Figura 2
Figura 3
Resumen
El fósforo fue descubierto, en 1669, por el alquimista alemán Henning Brandt. Era un producto blanco que en la oscuridad irradiaba luz. Recibió el nombre phos phorus, que en griego significa «portador de luz». El fósforo está en la esencia de la vida, todos los organismos vivos dependen de los fosfatos. En el ácido desoxirribonucleico (ADN) y en el ácido ribonucleico (ARN) las unidades de fosfatos desempeñan un papel estructural. La formación y ruptura de los enlaces P-O sirve como almacén de energía en el trifosfato de adenosina (ATP). El fósforo activa y desactiva enzimas y proteínas, mediante la pérdida o ganancia de grupos fosfatos, con lo que controla parte de la actividad celular. Forma parte de las membranas celulares que aíslan y protegen células  y  organelas.  Compone  la estructura  de  huesos  y dientes; sin el fósforo la vida sería diferente a como la conocemos. Sin embargo, el fósforo forma parte de los compuestos llamados organofosforados, que son tóxicos y conduce  a  la muerte.  El  fósforo  ingerido  en  gran  cantidad puede provocar un fallo renal agudo. También está relacionado con diversos procesos, como en el desarrollo del hiperparatiroidismo secundario, la inflamación, la alteración de la inmunidad, la progresión de la enfermedad renal crónica (ERC), la morbimortalidad cardiovascular y la calcificación vascular. Disminuye la síntesis de calcitriol y promueve la elevación del factor de crecimiento de fibroblastos (FGF), ambos aspectos implicados en la mortalidad de los pacientes con ERC. La calcificación vascular puede afectar a la capa media y a la íntima de las arterias, aunque existe controversia sobre si se trata de una o dos entidades diferentes.
Abstract
Phosphorus was discovered  in 1669 by  the German alchemist,  Henning Brandt.   It was a white product that  radiated  l ight  in  the  dark.   The  name  phos phorus  comes  from  ancient  Greek  and  it  means “bringing light”. Phosphorus is at the core of life, all living organisms depend on phosphates. Phosphorus has a structural role  in DNA and RNA molecules. The rupture of P-O  links  in ATP molecules  is used  to give energy  in  many  biochemical   processes.   Many enzymes  and  proteins  need  phosphorus  for activation,   in  this  way  phosphorus  controls  some processes  of  cel lular  biology.  It  is  a  principal component  of  cellular  membranes,  essential  to protect and  isolate cells and organelles.  It  is a main component of teeth and bones. Without phosphorus the  life  would  be  very  different  as  we  know  it. However,  phosphorus  is  an  element  of organophosphorus  compounds,  they  are  very  toxic and can cause death by poisoning. The  ingestion of high doses of phosphorus as cathartic drug can induce acute renal failure.  It has been  implicated directly  in many pathologies,  secondary  hyperparathyroidism, inflammation,  immune alterations, CKD progression, cardiovascular morbidity and mortality and vascular calcification. Phosphorus decreases calcitriol synthesis, and  promotes  FGF  increase,  both  implicated  in mortality  of  CKD  patients. Whether  arterial  intima and media  calcification  are  or  not  distinct  entities remains controversial. 
Palabras clave: Calcificación vascular, Hiperparatiroidismo secundario, Morbimortalidad cardiovascular, Nefropatía aguda por fósforo Key Words: Vascular calcification, Secondary hyperparathyroidism, Cardiovascular mortality and morbidity, Phosphate acute nephropathy

INTRODUCCIÓN

El fósforo (P) lo descubrió, en 1669, el alquimista alemán, nacido en Hamburgo, Henning Brandt. Ya desde su descubrimiento tuvo que ver con la Nefrología, puesto que se obtuvo a partir de grandes cantidades de orina, que  tras descomponerse durante largo tiempo fueron destiladas y al condensarse los vapores en agua se obtenía un producto blanco que en la oscuridad irradiaba luz. Por eso recibió un nombre tan hermoso phos phorus, que en griego significa «portador de luz».

El fósforo está en la propia esencia de la vida, todos los organismos vivos dependen totalmente de los fosfatos. El material genético de la vida consiste en unidades de azúcar, unidas mediante unidades de fosfato para formar  la cadena en hélice. En el ADN y en el ARN las unidades fosfatos desempeñan un papel estrictamente estructural, pero  también son esenciales en el metabolismo de las células. La formación y ruptura (hidrólisis) de los enlaces P-O sirve como almacén de energía en el trifosfato de adenosina (ATP). La energía liberada en esta hidrólisis se utiliza para realizar el trabajo mecánico en la contracción muscular y en muchas reacciones bioquímicas: ATP = ADP + energía (~ 33 kJ).

El fósforo activa y desactiva enzimas y proteínas, mediante la pérdida o ganancia de grupos fosfatos, con lo que controla parte de la actividad celular.

Forma parte de las membranas celulares que aíslan y protegen a las células y sus organelas, sin las membranas los compartimentos celulares o las propias células no existirían.

Compone  la estructura de nuestros huesos y dientes, sin el fósforo probablemente nuestro aspecto sería diferente al que conocemos.

Sin embargo, hasta un «portador de luz» tiene un lado oscuro. El fósforo forma parte de los compuestos llamados organofosforados, que son tóxicos y provocan una sobrestimulación de los músculos, glándulas y órganos. La víctima de este veneno entra en convulsiones violentas y muere rápidamente. El fósforo causó la muerte de mujeres que trabajaban en fábricas de cerillas y aún hoy se usa en las guerras como arma química. Pero además, el fósforo ingerido en gran cantidad puede provocar un fallo renal agudo. Se ha relacionado con el desarrollo de hiperparatiroidismo (HPT) secundario, la inflamación, la alteración de la inmunidad, la progresión de la ERC, la morbimortalidad cardiovascular y la calcificación vascular. Además, disminuye la síntesis de calcitriol y promueve la elevación  de  FGF, ambas  implicadas  en  la  mortalidad  de  los pacientes con ERC. Todo ello se describirá a continuación.

Nefropatía aguda por fósforo

La detección del cáncer colorrectal, en individuos a partir de los 50 años, ha sido un éxito desde el punto de vista de la salud pública. La preparación previa para la colonoscopia  requiere  la utilización de una solución oral de  fosfato sódico que generalmente es bien tolerada por individuos con función  renal y gastrointestinal normales. Sin embargo, a partir del año 2003, se comenzaron a publicar casos aislados de nefropatía aguda por fósforo (NAF), ocasionada por la sobrecarga aguda de P debida a la utilización de la solución de fosfato sódico, con un contenido de más de 12g de fósforo, que ocasiona un fallo renal agudo a veces irreversible, objetivándose en la biopsia renal datos de nefroacalcinosis e inflamación intersticial. Esto ha llevado a la Food and Drug Administration (FDA) estadounidense a realizar una advertencia sobre la utilización de esta solución tanto en pacientes con ERC como en aquellos con comorbilidad cardiovascular.

En un artículo de revisión de Lien se recogen todos los casos conocidos hasta el momento. Se trata de 27 individuos, de ellos 22 mujeres, con una media de edad de 65 años, que refleja fundamentalmente la edad a la que se realiza la exploración  de  detección. Las mujeres más  ancianas  tienen mayor  riesgo, probablemente  porque  su  capacidad  renal para manejar  la  sobrecarga  de  fosfato  está más  reducida, además su menor  índice de masa corporal (IMC)  las hace más  sensibles  a  la  sobrecarga de volumen. El periodo de tiempo entre la colonoscopia y el diagnóstico de la NAF varió entre 1 y 150 días, lo que refleja la naturaleza silente del fallo renal. En cuanto a la función renal, fue prácticamente normal en todos los pacientes antes de la exploración, con unos valores de creatinina entre 53 y 88 µmol/l, apareciendo posteriormente elevaciones entre 150 y 900 µmol/l. Los factores de riesgo más habitualmente encontrados fueron: diabetes mellitus (DM), hipertensión arterial (HTA), mayor  edad,  algún  grado  de  ERC,  o  la  toma  de  fármacos como inhibidores de la enzima de conversión de angiotensina (IECA), antagonistas de los receptores de angiotensina II (ARA II), antiinflamatorios no esteroideos (AINE), diuréticos y utilización de contrastes. Los datos analíticos fueron los siguientes:

- Elevación de la creatinina desde valores de 53-88 hasta 150-900 µg/l, permaneciendo al final del seguimiento entre 76-299 µg/l.
- Hiperfosfatemia secundaria a la sobrecarga oral de fosfato, habiéndose  comunicado  casos de hiperfosfatemia fatal.
- Hipocalcemia, desarrollada por la propia hiperfosfatemia.
- Hipopotasemia, ocasionada en parte por la pérdida gastrointestinal (GI) de potasio y también por la pérdida renal de este ión, facilitada por la hiperfosfaturia. Esta alteración  hidroelectrolítica,  junto  con  la  hipocalcemia, puede afectar al ritmo cardiaco con prolongación del segmento QT.
- Hipernatremia, ocasionada por la sobrecarga oral, severa hipernatremia de 166 mmol/l. 

Patogénesis

La sobrecarga de fosfato estimula  la hormona paratiroidea (PTH) y reduce la síntesis de 1-25 (OH)2 D3. La fosfaturia se eleva de la primera a la segunda dosis de 4 a 8 veces. La hipercalciuria es debida a que la sobrecarga de sodio (Na) suprime la reabsorción de calcio en el túbulo proximal. En el asa de Henle, el líquido  tubular  sobresaturado en calcio y fósforo da lugar a la producción de un material sólido, probablemente apatita inmadura, que obstruye la luz; esta sustancia es internalizada por las células epiteliales dando lugar a una reacción inflamatoria y daño celular, que causará la fibrosis intersticial2.

Fósforo e hiperparatiroidismo secundario

Desde  hace muchos  años  se  sabe  que  las  concentraciones plasmáticas de calcio y fósforo intervienen en el desarrollo del HPT secundario en la ERC. Posteriormente se descubrieron  los  mecanismos  que  lo  desarrollan. Algunos  trabajos muestran que las proteínas AUF1 y KSPR (K-homology splicing regulator protein) se unen al ARNm de la PTH estabilizándola en situaciones de depleción de calcio, cambios en la fosfatemia o en la ERC2.

Otro trabajo realizado con ratas muestra cómo se dividía a los animales en tres grupos, uno de ellos control: ratas sin daño renal y dieta normal, y otros dos grupos con ratas sometidas a nefrectomía 7/8. De ellos, en uno las ratas tomaban dieta pobre en fósforo y las del otro dieta rica en fósforo. Los animales son sacrificados, se extraen muestras de sangre y las glándulas paratiroides (GPT). Según los valores de PTH se dividen en tres grupos, con hiperparatiroidismo (HPT) normal, moderado y severo. Se estudia la expresión de genes en el material de las GPT. Las ratas con HPT severo presentaban GPT más grandes y P más elevado, calcio más bajo y peor función renal,  junto con una marcada y generalizada disminución de la expresión génica. Sin embargo, algunos genes estuvieron sobreexpresados con las ciclinas B1 y B2 y  algunos miembros de  la  familia de  las Dual Specificity Phosphatases y TGF-beta 2. Los autores concluyen que  la dieta rica en P es capaz de desarrollar un mayor grado de HPT secundario y en esta situación existen diferentes grados de expresión de los genes que intervienen en la hiperplasia y las apoptosis3.

Fósforo e inflamación

Las alteraciones del metabolismo mineral y la inflamación son factores que se han relacionado con el incremento del riesgo vascular y la mortalidad por esta causa en pacientes con ERC. En un trabajo de Navarro et al.4 los autores plantean analizar  las posibles  relaciones entre parámetros del metabolismo mineral, fundamentalmente el fósforo, y la inflamación a través de los marcadores de la proteína C reactiva (PCR), el factor de necrosis tisular alfa (TNF-α) y la interleucina-6 (IL-6).

Se estudió a 118 pacientes con ERC en estadio 3b-4, 68 varones y 61 años de media de edad, y se determinaron  los valores  de  calcio,  fósforo,  producto calcio  x  fósforo  y PTH. Resultados:  la PCR se relacionó con el filtrado glomerular y el fósforo, pero no con el colesterol ni la PTH; la IL-6  se  relacionó  con  el filtrado  glomerular  y  el  fósforo, pero no con el colesterol, la edad o el IMC. En el análisis de regresión múltiple se demostró que la concentración sérica de fósforo era un determinante independiente de los niveles de PCR (p <0,01) e IL-6 (p <0,05)4.

Fósforo e infección

La hiperfosfatemia es muy frecuente en pacientes en diálisis. La relación de la fosfatemia con la disfunción inmunitaria no se ha estudiado en profundidad. Los autores de este ensayo5 estudiaron una cohorte de 1.010 pacientes  incidentes en diálisis  entre 1995 y 1998 pertenecientes  a 80  centros americanos.  Se recogieron  datos  de  cualquier  tipo  de infección, sepsis, infección respiratoria y osteomielitis a lo largo de todo el seguimiento. La fosfatemia >5,5 mg/dl se relacionó de forma significativa con la incidencia de todo tipo de infecciones, sepsis y osteomielitis, pero no se halló significación con la infección respiratoria. No se encontró relación con los valores de calcemia.

Fósforo y progresión de la ERC

En  un  trabajo  realizado  por  Kusano  et  al.6,  los  autores pretenden  discernir  entre  la  sobrecarga  proteica  y  la sobrecarga de fósforo, para ver cuál de los dos factores tiene más peso  en  el desarrollo de  la progresión de  la ERC. El estudio se realizó con ratas y dividió a los animales en siete grupos, uno de ellos el grupo control, y el resto de los animales fueron sometidos a nefrectomía unilateral e inyección de un anticuerpo monoclonal que  les produjo una nefropatía que remeda  la  glomerulonefritis  (GN)  por  inmunoglobulina A (IgA). A su vez,  los  seis grupos  se dividieron en dos,  tres grupos tomaron una dieta normal en fósforo y los otros tres una dieta pobre en fósforo, pero tanto unos como los otros también tomaron unos porcentajes del 16,9, 12,6 u 8,4% de proteínas en lo que los autores denominan dieta normal, pobre y muy pobre en proteínas.

La restricción de fósforo fue más eficaz para evitar la progresión que la dieta con restricción proteica6.

Otros estudios se diseñan para valorar los diferentes factores predictores de  la evolución y progresión de  la ERC. Quizá uno de los más representativos es el que realizaron Levin et al.7 Se  trata de un  estudio  retrospectivo de una  cohorte de 4.231 pacientes con TFGe <30 ml/min y una media de edad de 61 años, reclutados entre enero del 2000 y 2004. Se consideraron variables demográficas la edad, el sexo, la raza; patologías asociadas la HTA, la DM y la existencia de proteinuria; datos analíticos como la hemoglobina, el calcio, el fósforo, la PTH; tratamientos farmacológicos con IECA, ARA II, eritropoyetina o vitamina D. El estudio concluyó que el fósforo fue un factor de riesgo tanto para el declinar de la función renal como para la muerte7.

Fósforo y corazón

En 1984 se  inició el Coronary Artery Risk Development  in Young Adults8, conocido como estudio CARDIA. Se trata de un estudio prospectivo realizado sobre una cohorte de 5.116 individuos blancos y negros, hombres y mujeres, de 18 a 30 años y sanos. El seguimiento fue de 15 años con el objetivo de investigar si el estilo de vida, aspectos psicosociales y otros factores  influyen favorable o desfavorablemente en  la evolución de los factores de riesgo de la enfermedad coronaria. En más de la mitad de los participantes se midió la calcificación arterial coronaria (CAC) por técnicas de imagen. A todos  ellos  se  les  realizaron mediciones  antropométricas  y analítica en sangre y orina. Foley9 realizó un subanálisis de este estudio para investigar si existe asociación entre el nivel de fósforo y la calcificación coronaria. Al término del estudio se demostró una relación directa y significativa entre los niveles plasmáticos de fósforo y la calcificación de las arterias coronarias.

Otro estudio, el Dallas Heart Study10 realizado sobre 2.672 individuos con una media de edad de 45 años, permitió valorar factores de riesgo de calcificación vascular en los 220 pacientes que presentaban ERC. La calcificación vascular se midió mediante puntuaciones (scores) que podrían ser superiores o inferiores a 100. La prevalencia de la calcificación coronaria se incrementó significativamente a lo largo de las fases de la ERC. La asociación entre la ERC y la calcificación coronaria fue independiente de los factores de riesgo clásicos, pero desapareció al ajustar por el producto Ca x P, la homocisteína y la osteoprotegerina, mostrando de nuevo la relación entre la calcificación vascular y el metabolismo mineral.

Otro ensayo11 fue realizado en 85 pacientes con DM y nefropatía, ninguno de  los cuales había  requerido diálisis ni angioplastia o derivación coronaria. La calcificación coronaria se midió por tomografía computarizada con multidetector (TCMD), y se encontró una relación directa entre la calcificación  coronaria,  el fosfato,  la osteoprotegerina,  la presión arterial sistólica (PAS) y la edad.

Fósforo y mortalidad cardiovascular

El estudio ARIC12 es un gran estudio del que se han obtenido muy variados datos, además de  los objetivos para  los que se diseñó. Se comenzó en 1986, terminando el reclutamiento en 1989, y se consiguieron un total de 15.792 participantes de edades comprendidas entre 45 y 64 años, pertenecientes a diversas comunidades de EE.UU. Al inicio no debían  padecer  enfermedad  cardiaca  y  su TFG  debía  ser >15 ml/min. Se realizaron analíticas de sangre para valorar lípidos, glucemia, hemograma TFGe por MDRD y hábitos tóxicos como el tabaco, el IMC, cifras de PA, actividad física, etc. En el año 2000 se llevó a cabo el estudio de resultados del que se extrajo un subanálisis en el que, ajustando por  todas  las demás variables, el  fósforo  se asoció con enfermedad coronaria; ictus o muerte con una ratio de 1,03  (0,89-1,08);  1,11  (1,02-1,21  p  =  0,02);  1,14  (1,09-1,20, p <0,0001) respectivamente.

El Dialysis Outcomes and Practice Patterns Study (DOPPS)13 fue un estudio prospectivo de 25.588 pacientes con ERC en HD con más de 180 días de tratamiento sustitutivo. Hay tres fases en este estudio, 1996-2001 para DOPPS I; 2002-2004 para DOPPS II y 2005-2007 para DOPPS III. El objetivo era estudiar todas las causas de muerte así como la muerte, por causa cardiovascular. En la más reciente fase del DOPPS, el más bajo riesgo de mortalidad correspondió a valores de calcemia entre 8,6 y 10 mg/dl, fosfatemia entre 3,6 y 5 mg/dl y PTH entre 101 y 300 pg/dl, siendo el mayor riesgo de muerte para calcio >10 mg/dl; fósforo >7 mg/dl y PTH >600 pg/dl13.

Otro estudio14 se llevó a cabo con un cohorte de 22.937 incidentes en diálisis de julio de 2000 a julio de 2002, con 2 años de seguimiento. El objetivo fue doble:

- Ver cuántos pacientes tenían unas determinadas variables: calcio, fósforo y PTH dentro del rango aceptado.
- Cómo influía esto en la mortalidad.

Resultados: ninguna variable en rango: riesgo 51%; una variable en rango: riesgo del 35 al 39%; dos variables en rango: riesgo del 15 al 21 %. El mantenimiento del P en rango disminuía el riesgo en un 38%.

Fósforo y mortalidad global

La ERC es un poderoso factor de riesgo de mortalidad por cualquier causa y fundamentalmente para la mortalidad de causa cardiovascular. En un artículo de revisión15 se realizó una búsqueda sistemática en Medline, EMBASE y Cochrane  de  todos  aquellos  estudios  publicados  entre  enero  de 1980 y diciembre de 2007. Se  incluyeron 35 estudios; en 29 se investigaba la mortalidad por cualquier causa, en 11 se describía el riesgo cardiovascular, pero sólo se detallan los  episodios  cardiovasculares  (ECV)  en  4  de  ellos. Los trastornos del metabolismo mineral produjeron un aumento de la mortalidad ya fuera cardiovascular o por otra causa. El mayor  riesgo  fue debido al  fósforo, seguido por el calcio y la PTH.

Las alteraciones del metabolismo mineral en el contexto de la ERC aumentan significativamente el riesgo cardiovascular, pero también hay un incremento del riesgo en pacientes malnutridos con valores de albúmina bajos. Para discernir entre las dos causas de riesgo se estudió a 1.007 pacientes en diálisis16 que habían comenzado el tratamiento de sustitución entre enero de 1990 y diciembre de 2004. El valor del fósforo, el calcio y la albúmina se midió entre el tercero y el sexto mes tras el comienzo de la diálisis y se comparó con la supervivencia. Resultados:  el  18%  de  los  pacientes  tenían  p >5,5 mg/dl y la supervivencia a los 5 años fue del 48,4% frente a los que tenían p <5,5 mg/dl, cuya supervivencia fue del 58,6%. En cuanto a la albúmina, el 34,9% tenían albúmina <35 g/l y la mortalidad era significativamente más alta. Los pacientes que combinaban calcio, fósforo y albúmina normales tenían una supervivencia del 62,5% frente al 30,7% de los que no tenían ninguno de los tres valores en rango.

Fósforo y calcificación vascular

La calcificación vascular no es una patología nueva. Mediante TAC se ha descubierto que el llamado «hombre las nieves», al que se atribuyen más de 5.000 años de antigüedad, tenía calcificación vascular. Alfrey et al.22 demostraron hace casi 30 años que los pacientes con ERC tenían mayor calcificación vascular que los individuos de la misma edad y sexo.

Teniendo esto en cuenta, ¿cuál es la razón del gran interés por la calcificación vascular que ha aparecido entre los nefrólogos en los últimos años?

- La consistente relación entre calcificación vascular y riesgo de morbimortalidad cardiovascular.
- La capacidad demostrada de conversión de  las células de músculo  liso vascular  (CMLV) en condrocitos y osteoblastos-like.
- El conocimiento de que hay proteínas clave en el desarrollo de esta calcificación vascular.
- Una demostrada relación entre ERC y enfermedad ósea y vascular.

Sabemos ahora que el arduo empeño en tratar la osteodistrofia nos ha llevado en muchas ocasiones a acelerar la calcificación vascular.

La calcificación vascular requiere de dos fenómenos. Uno de ellos es la transformación fenotípica de las CMLV en condrocitos u osteoblastos-like, que podría considerarse como osificación, y el otro es un fenómeno fisicoquímico, el depósito de calcio y fósforo, muy pH dependiente, cuyo desarrollo no requiere  siquiera de  la  presencia  celular.  Durante  mucho tiempo se ha considerado que  la concentración de calcio y fósforo conocida por el concepto «producto calcio-fósforo» era predictiva de mineralización extraesquelética en pacientes con ERC y daba seguridad a los médicos cuando este producto estaba en rango normal. Sin embargo, esto no es completamente cierto porque el  riesgo asociado a un determinado producto calcio-fósforo depende, además, de  la existencia de enfermedad arterial previa y de  los  factores que actúan  inhibiendo o  favoreciendo  la mineralización. Estudios  realizados con animales de experimentación han  permitido  completar  los  estudios  clínicos  en pacientes. Los modelos animales se clasifican en cinco grupos:

- Hiperfosfatémicos con ERC y dieta rica en fósforo o déficit de FGF y klotho.
- Hipercalcémicos por altas dosis de vitamina D.
- Aterosclerosis, por falta del receptor de Apo E y LDL.
- Alteraciones del remodelado óseo por falta de osteoprotegerina.
- Déficit de inhibidores de la mineralización como la proteína de matriz Gla.

Lo más interesante es que, en estos modelos animales, la calcificación puede prevenirse o reducirse con los tratamientos médicos actuales. Además, estos estudios muestran una robusta evidencia de que las sobrecargas de fósforo y calcio son claves en el defecto del remodelado óseo que dará lugar a la calcificación vascular, confirmando un nexo de unión entre ambos fenómenos.

Sin embargo, no  todos  los pacientes en diálisis o con ERC desarrollan calcificación vascular, lo que indica que existen factores protectores en su pared vascular o en su torrente circulatorio. En este último uno de los más importantes factores es la fetuín A, que actúa como un aspirador de moléculas de calcio y fósforo en el plasma. La concentración de fetuín A disminuye con la inflamación. Los bajos niveles de fetuín A en pacientes en diálisis se asocian con calcificación vascular y valvular y muerte. Otros factores, en este caso locales, son la proteína de matriz Gla, el pirofosfato y la osteopontina, aunque es posible que la pared vascular contenga además otros mediadores, e incluso que su concentración varíe en las diferentes localizaciones anatómicas.

En una situación normal, la célula madre mesenquimal dará lugar al adipocito y a la CMLV, además y a través de factores de expresión génica RUNX2 y MSX2 dará lugar al osteoblasto/condrocito. En situaciones de ERC, DM, inflamación, pacientes ancianos y en presencia de determinadas toxinas, el osteoblasto/condrocito  también puede desarrollarse desde las CMLV dirigidas  por  los  factores  de  expresión  génica RUNX2 y MSX2. El fósforo actúa en este escenario de dos formas:

- Penetrando en la CMLV a través de un canal dependiente de Na y activando y desactivando genes hasta conseguir un cambio del fenotipo de la célula, que pasará de ser una CMLV a un osteoblasto/condrocito.
- Junto con el calcio, mineralizará el tejido osteoide formado, dando lugar a la calcificación vascular.

En los pacientes con ERC, ya sea con bajo o alto remodelado óseo, los niveles de calcio y fósforo pueden estar elevados. En el primer caso, porque el hueso no acepta los minerales y en el segundo, por aumento de la liberación de éstos.

Hay una robusta evidencia epidemiológica de que el fosfato sérico es un factor de riesgo independiente de morbimortalidad cardiovascular. El grupo de Hruska17, en St. Louis, desarrolló un modelo de ratas con deficiencia del receptor LDL a las que alimentan con una dieta rica en grasa. Los animales desarrollaron obesidad, dislipemia, DM e HTA, lo que en humanos se conoce como síndrome metabólico. Asu vez, se observó aterosclerosis con placas de calcificación  localizadas en la neoíntima de las arterias y en las válvulas cardiacas de los animales. Sus CMLV expresaban las proteínas morfogénicas de hueso BPM-2 y BPM-4 y los factores de trascripción Runx2, Msx2,  osteocalcina  y  osteopontina,  proteínas  que muestran la diferenciación celular de CMLV a osteoblastos. A pesar de ello, la calcificación vascular era baja. Posteriormente estas ratas fueron sometidas a ablación renal parcial, con lo que desarrollaron ERC e hiperfosfatemia, lo que produjo un aumento varias veces superior del factor de trascripción osterix, y esto multiplicó la calcificación por dos a cuatro veces.

Un segundo modelo de estudio18 consistió en CMLV de anillos de aorta humanos con placas de aterosclerosis, cultivados  en medios habituales. Las  células expresaban BPM-2, BMP-4, Runx2, Msx2 y osteocalcina. Cuando se incrementaba el fósforo en el medio de cultivo hasta un valor equiparable a una concentración plasmática de 6-9 mg/dl, aumentaba varias veces  la expresión de osterix y esto promovía  la mineralización de la matriz celular. Cuando se reducía la concentración  de  fósforo  en  sangre  en  los  animales mediante quelantes o se bloqueaba la acción de fósforo en el medio de cultivo, se inhibía la mineralización de la matriz en la pared vascular.

Por todo esto, el fósforo es más que un estimulador de la calcificación vascular; actuando mediante una elevación del producto calcio x fósforo en la ERC y la IRC, es una molécula señal que sirve para completar la diferenciación de la CMLV a osteoblasto y para calcificar las lesiones ateromatosas a través del estímulo de factores como osterix.

En  las gráficas pueden verse  los resultados del modelo 1 (figura 1). Ratas con deficiencia del receptor LDL alimentadas con dieta  rica en grasas y con posterior ablación  renal para desarrollar ERC e IRC. A las 22 semanas, las ratas presentaban unos valores de fósforo plasmático de 10 mg/ml. Se distribuyeron en tres grupos, unas tratadas con placebo, otras con quelantes del fósforo al 1 y 3% durante 6 semanas. Se utilizaron tres tipos de quelantes: carbonato de calcio, carbonato de lantano y carbonato de sevelamer. La fosfatemia descendió en los animales tratados con quelantes. De la misma manera, la calcificación de la aorta se redujo en los animales tratados, aunque esta reducción sólo resultó significativa en los animales que consiguieron un descenso del fósforo por debajo de 6 mg/dl.

Fósforo e inhibidores de la calcificación vascular

El pirofosfato (Ppi) es un  inhibidor bien establecido de  la calcificación en el cartílago, de la cristalización del oxalato de calcio en el riñón y de la calcificación vascular en ratas intoxicadas con vitamina D. Es un potente inhibidor de la hidroxiapatita, y mínimas concentraciones en plasma de pirofosfato son suficientes para inhibir la cristalización de soluciones sobresaturadas de fosfato y calcio. La fosfatasa alcalina  no  específica  de  tejido  (FANT)  es  la  llave  que determina la concentración de Ppi, ya que hidroliza y, por ende, destruye la molécula. En ratas, a las que se les produce ERC e IRC mediante dieta rica en adenina o nefrectomía 5/6, se objetiva un aumento del 92% de  la actividad de  la FANT en cultivo de aortas de dichos animales. La eliminación de la adventicia y del endotelio de dichos vasos no modificó la actividad de la FANT, demostrando que las productoras de la FANT eran las CMLV. El aumento de la FANT podría ser regulado en parte disminuyendo su degradación. Entre los factores candidatos para ello se incluyen la hiperfosfatemia  y  el HPT secundario. Éste  es  otro mecanismo que se postula mediante el cual la hiperfosfatemia conduce a la calcificación vascular.

Formas de calcificación vascular

Se ha aceptado hasta ahora que la calcificación vascular tiene dos formas de presentación: aterosclerosis y esclerosis de Mönckeberg.

Aterosclerosis

La forma más trabajada de describir la aterosclerosis ha sido elaborada por el Comité de Lesiones Vasculares del Consejo de Arteriosclerosis de la Asociación Americana del Corazón. Se ha dividido en VI fases.

- Fase I: lesiones que contienen suficiente cantidad de lipoproteínas aterogénicas como para atraer macrófagos, que tras fagocitarlas se transforman en células espumosas.
- Fase II: aparición de láminas de células espumosas que se colocan entre la íntima y la capa de CMLV, en principio, sin romper la elástica interna, incluyendo lesiones conocidas como estrías grasas.
- Fase III: gotas de lípidos y partículas localizados a nivel extracelular y disrupción de la elástica interna.
- Fase  IV: confluencia de  lípidos  formando un «núcleo». Disrupción mayor.
- Fase V: «núcleo» lipídico al que se le añade tejido fibroso. Dentro de esta fase V pueden desarrollarse calcificaciones y ésta se considera fase Vb, o no, en cuyo caso se denomina fase Vc.
- Fase VI: cuando la placa se fisura y aparecen hematoma y trombos.

Esclerosis de Mönckeberg

La esclerosis de Mönckeberg se caracteriza por una calcificación  de  la  capa  media  de  las  arterias  formada  por CMLV. El hecho de que afectara o no a la lámina elástica interna ha sido motivo de controversia no del todo resuelta. Afecta a arterias musculares y los factores de riesgo para su aparición son: edad, DM, ERC y osteoporosis. No hay signos inflamatorios. Durante mucho tiempo se consideró una entidad benigna, sin repercusión patológica, pero actualmente  se sabe  que  da  lugar  a  una  disminución  de  la compliance arterial,  incremento  de  la  presión  del  pulso, HVI,  alteración  de  la  perfusión  coronaria  y enfermedad vascular periférica.

A pesar de la aparente clara diferencia entre ambos tipos de lesiones vasculares, en el último año se ha creado una importante controversia entre los grupos que opinan que ambas lesiones son diferentes y  los que defienden que son  iguales, pero  quizá  valoradas  en  diferentes  fases  de  su  evolución. Esta última es la opinión de McCullough, quien sorprendió con esta comunicación personal en una reunión de expertos en 2007. En su revisión explica que las lesiones vasculares en que aparece una placa calcificada y que son denominadas esclerosis  de Mönckeberg,  podrían  ser  placas  de  ateromas calcificados19.

Según McCullough, Mönckeberg describe los hallazgos patológicos observados al microscopio óptico de 130 casos20, sin especificar morbilidad acompañante: 57 sin aparente enfermedad vascular; 43 con calcificación medial; 18 con aterosclerosis sin calcificación medial; 12 con aterosclerosis y calcificación  medial. Tenían  calcificación  medial  55  casos,  y Mönckeberg los describe así: a) estadio 1: placa elástica amarilla; b) estadio 2: placa de ateroma, y c) estadio 3: aparición de úlcera y trombos. Por tanto, se podría concluir que la descripción original de Mönckeberg no era otra cosa que las fases de la placa aterosclerótica.

En 1912 Faber23 publicó que  la calcificación de  las arterias coronarias es de etiología ateromatosa en origen y no esclerosis de Mönckeberg.

En 1965 Eggen24 publicó los hallazgos de una serie de 1.242 necropsias, el 73% de las cuales tienen menos de 60 años, más del 95% de las lesiones ateroscleróticas coronarias están calcificadas, y menos del 5% tienen estenosis significativas.

En una búsqueda sistemática en Medline con el término «esclerosis de Mönckeberg» en el título, de todo lo publicado entre 1957 y 2008, se encontraron 15 citaciones, algunos casos comunicaciones (reports) y otras series de casos. Muchos de los casos llamados esclerosis de Mönckeberg describían halazgos de calcifilaxis, y en otros no se buscaron o evaluaron hallazgos típicos de ateromatosis.

Sanahan27, en 1999, encontró hallazgos de ateromatosis intimal en cortes de la pared de arterias con calcificación medial.

Asimismo, el McCullough25 presenta arterias en las que pueden verse calcificaciones mediales con signos inequívocos de ateromatosis y afectación neointimal (figura 2).

Amann21 apuesta por dos entidades diferentes, pero explica las razones que, en su opinión, han llevado a otros grupos a pensar que es una única patología.

A favor de dos entidades diferentes:

«La calcificación vascular en la ERC se divide morfológica y clínicamente en intimal (placa calcificada) o medial, ambas asociadas con aumento de morbimortalidad cardiovascular. Habitualmente indistinguibles a través del MO».

Los  pacientes  con ERC  tienen  lesiones  ateromatosas muy evolucionadas, por tanto muy calcificadas, que afectan a gran parte de la pared vascular y son difíciles de diferenciar con técnicas de imagen.

Las lesiones varían con el tipo de arteria, coronaria frente a periférica,  o  la  localización,  distal  frente  a  proximal,  pero pueden coexistir en el mismo paciente.

Se han encontrado arterias con calcificación de la media sin ninguna lesión ateromatosa (figura 3).

Al margen de estas disquisiciones, la controversia puede llevarse a cuatro niveles:

- Conceptual: ¿existe esclerosis de Mönckeberg?
- Morfológica: ¿dos lesiones diferentes?
- Clínica: ¿tienen la misma repercusión clínica?
- Terapéutica: ¿tienen el mismo tratamiento?

La repercusión médica implica fundamentalmente a la clínica y el tratamiento:

- Clínica: en la aterosclerosis, la calcificación de la íntima parece contribuir a la vulnerabilidad de la placa, posiblemente a través de la incapacidad para la vasoconstricción de las porciones de arteria calcificada, frente a la posibilidad de vasoconstricción de la pared sana, lo que produciría un estiramiento de la zona intermedia con probabilidad de rotura. Por otro lado, la calcificación de la media contribuye a la rigidez, al aumento de la PP, de la velocidad de la onda del pulso, la HTA, la HVI y a la disminución de la perfusión miocárdica. London et al.26 encuentran mayor riesgo de mortalidad en pacientes en diálisis con calcificación de la íntima que en aquellos con calcificación de  la media, pero es muy difícil diferenciar con técnicas de imagen la localización de dicha calcificación en la pared vascular.

- Tratamiento: las estatinas han mostrado en varios estudios aleatorizados, frente a placebo, que no pueden disminuir  la evolución de  la calcificación vascular medida en aorta, que fue del 25% anual, pero sí se pudo reducir el riesgo cardiovascular, probablemente por estabilización de la placa.

Sin embargo, parece existir un tratamiento para atenuar la calcificación vascular, actuando sobre  las alteraciones del metabolismo mineral. En el estudio Treat to Goal28 con 200 pacientes en diálisis, asignados a sevelamer frente a acetato o carbonato de calcio, la CAC disminuyó con sevelamer pero no el calcio, el fósforo o  la PTH en plasma. Sin embargo, se redujo el col-LDL, haciendo suponer que ésta fue  la  causa  de  la  disminución  de  la  CAC.  El  estudio RIND, de similar diseño, mostró mayor mortalidad en los pacientes con quelantes de calcio que con sevelamer y mayor  tasa de CAC. El estudio CARE-2 asignó 203 pacientes a recibir sevelamer o acetato de calcio más atorvastatina  para  conseguir  los  mismos  valores  de  col-LDL.  No hubo diferencias en la CAC.

CONCLUSIONES

- La sobrecarga oral de fósforo produce daño renal agudo.
- El fósforo está implicado en la progresión de la ERC.
- El fósforo está implicado en un aumento de la inflamación y la infección en pacientes en diálisis y ERC.
- El fósforo está implicado en un aumento de la mortalidad global y de la morbimortalidad cardiovascular.
- El fósforo está implicado en la calcificación vascular en varios niveles.
- Existe controversia en cuanto a la consideración de aterosclerosis y esclerosis de Mönckeberg como una única patología o dos cuadros diferentes.

Referencias Bibliográficas

1. Lien YH. Is bowel preparation before colonoscopy a risky business for the kidney? Nat Clin Pract Nephrol. 2008 Nov;4(11):606-14.

2. Nechama M, Ben-Dov  IZ, Briata P, Gherzi R, Naveh-Many T. The mRNA  decay  promoting  factor  K-homology  splicing  regulator protein  post-transcriptionally determines  parathyroid  hormone mRNA levels. FASEB J 2008 Oct;22(10):3458-68.

3. Carrillo-López N, Román-García P, Álvarez-Hernández D, Rodríguez-Rebollar A,  Fernández-Coto  T, Naves-Díaz M, Cannata-Andía  J. Secondary Hiperparathyroidism Implies Differential Gene Expression Profile with Deregulation of the DSPs Family. ASN 2008;TH-PO839.

4. Navarro  JF, Muros M, Mora C, Macía M, Getino MA, García  J. Independent relationship between Phosphorus and Inflammatory Parameters  in  Chronic  Kidney Disease  Patients.  ASN  2008;  F-PO1805.

5. Plantinga LC, Fink NE, Melamed ML, Briggs WA, Powe NR, Jaar BG. Serum phosphate  levels and  risk of  infection  in  incident dialysis patients. Clin J Am Soc Nephrol 2008 Sep;3(5):1398-406.

6. Kusano K, Segawa H, Ohnishi R, Fukushima N, Miyamoto K. Role of  low  protein  and  low  phosphorus  diet  in  the  progression  of chronic kidney disease in uremic rats. J Nutr Sci Vitaminol (Tokyo) 2008 Jun;54(3):237-43.

7. Levin A, Djurdjev O, Beaulieu M, Er L. Variability and risk factors for kidney disease progression and death following attainment of stage 4 CKD in a referred cohort. Am J Kidney Dis 2008 Oct;52(4):661-71.

8. Friedman GD,  Cutter GR,  Donahue  RP,  Hughes GH,  Hulley  SB, Jacobs DR, Jr., et al. CARDIA: study design, recruitment, and some characteristics  of  the examined  subjects.  J  Clin  Epidemiol 1988;41(11):1105-16.

9. Foley  RN,  Collins  AJ,  Herzog  CA,  Ishani  A,  Kalra  PA.  Serum phosphorus levels associate with coronary atherosclerosis in young adults. J Am Soc Nephrol 2009 Feb;20(2):397-404.

10. Baber U, de Lemos JA, Khera A, McGuire DK, Omland T, Toto RD, et al. Non-traditional risk factors predict coronary calcification in chronic kidney disease  in a population-based cohort. Kidney  Int 2008 Mar;73(5):615-21.[Pubmed]

11. Mikami S, Hamano T, Fujii N, Nagasawa Y, Isaka Y, Moriyama T, et al. Serum osteoprotegerin as a screening tool for coronary artery calcification score in diabetic pre-dialysis patients. Hypertens Res 2008 Jun;31(6):1163-70.

12. Foley RN, Collins AJ, Ishani A, Kalra PA. Calcium-phosphate levels and  cardiovascular  disease  in  community-dwelling  adults:  the Atherosclerosis Risk in Communities (ARIC) Study. Am Heart J 2008 Sep;156(3):556-63.

13. Tentori F, Blayney MJ, Albert JM, Gillespie BW, Kerr PG, Bommer J, et al. Mortality risk for dialysis patients with different levels of serum calcium, phosphorus, and PTH: the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis 2008 Sep;52(3):519-30.

14. Danese MD, Belozeroff V, Smirnakis K, Rothman KJ. Consistent control  of  mineral  and  bone  disorder  in  incident  hemodialysis patients. Clin J Am Soc Nephrol 2008 Sep;3(5):1423-9.

15. Covic A. NDT nov 2008. Epub ahead of print .

16. Phelan PJ, O'Kelly P, Walshe JJ, Conlon PJ. The importance of serum albumin  and  phosphorous  as  predictors  of  mortality  in  ESRD patients. Ren Fail 2008;30(4):423-9.[Pubmed]

17. Hruska KA, Mathew S, Lund R, Qiu P, Pratt R. Hyperphosphatemia of chronic kidney disease. Kidney Int 2008 Jul;74(2):148-57.

18. Mathew S, Tustison KS, Sugatani T, Chaudhary LR, Rifas L, Hruska KA. The mechanism of phosphorus as a cardiovascular risk factor in CKD. J Am Soc Nephrol 2008 Jun;19(6):1092-105.

19. McCullough PA, Chinnaiyan KM, Agrawal V, Danielewicz E, Abela GS. Amplification of atherosclerotic calcification and Monckeberg's sclerosis: a  spectrum of the  same disease process. Adv Chronic Kidney Dis 2008 Oct;15(4):396-412.

20. Mönkerberg JG. Über die reine Mediaverkalkung der Extremitätenarterien und  ihr  Verhalten  zur  Arteriosklerose.  Virchows  Arch  Pathol  Anat. 1903;171:141-67.

21. Amann K. Media calcification and intima calcification are distinct entities  in  chronic  kidney disease. Clin  J Am  Soc Nephrol 2008 Nov;3(6):1599-605.[Pubmed]

22. Ibels LS, Alfrey AC, Huffer WE, Craswell PW, Anderson JT, Weil R, 3rd.  Arterial  calcification  and  pathology  in  uremic  patients undergoing dialysis. Am J Med 1979;66:790-6.[Pubmed]

23. Faber A. Die Arteriosklerose,  ihre pathologische Anatomie,  ihre Pathogenese und Aetiologie. Jena: G. Fisher; 1912.[Pubmed]

24. Egeen  DA,  Strong  JP,  Mc  Gill  HC,  Jr.  Coronary  calcification: Relationship to clinically significant coronary lesions and race, sex and topographic distribution. Circulation 1965;32:948-55.[Pubmed]

25. McCullough P. CJANS 2008;3(6):1585-98.

26. London GM, Guerin AP, Marchais SJ, Metiviere F, Pannier B, Adda H. Arterial media calcification in end-stage renal disease: impact on all-cause  and cardiovascular  mortality.  Nephrol  Dial  Transplant 2003;18:1731-40.

27. Sanahan CM, Cary NR, Salisbury JR, Proudfoot D, Weissberg PL, Edmonds  ME.  Medial  localization  of  mineralization-regulating proteins in association with Mönckeberg´s sclerosis: Evidence for smooth  muscle  cell-mediated  vascular  calcification.  Circulation 1999;100:2168-76.

28. Chertow MG, Burke  SK, Raggi  P,  for de  Treat  to Goal Working Group: Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int 2002;62:245-52 [Pubmed]



Comentarios
Nombre*: Apellido*:
E-mail*:
Hospital*:
Dirección:
C.P.: País:
Comentario*:
(450 Palabras)
Código de Seguridad*:
* Campos Requeridos
Enviar
Enviar Enviar Enviar
Enviar
Órgano Oficial de la Sociedad Española de Nefrología