
Nefrologia xx (2025) 501469

Revista de la Sociedad Española de Nefrología

journal homepage: www.revistanefrologia.com

Original article

Data-driven phenotypes across the full AKI severity spectrum in patients

admitted to the ICU

Fenotipos basados en datos en todo el espectro de gravedad de la insuficiencia renal aguda en pacientes

ingresados en la UCI

Mohammad Fathia, Nader Markazi Moghaddama,b, Hamed Markazi Moghadamc,

Mahdis Fathia,d, Mohammadreza Hajiesmaeilie, Navid Nooraeia, Nasser Malekpour Alamdaria,

Sanaz Zargar Balaye Jame b *
aCritical Care Quality Improvement Research Center, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
bDepartment of Health Management and Economics, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
cGBD Collaborator Network, Global Labor Organization (GLO), Faculty of Economics and Management, Leibniz University Hannover, Hannover, Germany
d School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
eCritical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran

A R T I C L E I N F O

Keywords:

Acute kidney injury

Intensive care unit

Sepsis

Clustering

Phenotype

Risk stratification

A B S T R A C T

Background and objectives: Acute kidney injury (AKI) is a frequent and heterogeneous complication among

critically ill patients in the intensive care unit (ICU), often associated with adverse outcomes. This study aimed

to identify phenotypic subtypes of ICU patients with AKI and to evaluate their association with clinical

outcomes.

Materials and methods: A secondary analysis was conducted using the MIMIC-IV database, including a cohort

of adults with varying stages of AKI, as well as patients without AKI. Factorial analysis of mixed data, followed

by hierarchical clustering, was used to identify patient phenotypes based on a wide range of clinical,

demographic, laboratory, and treatment variables. Cluster profiling was conducted using a multivariable

logistic regression model.

Results: Among 1372 patients evenly distributed across stages 0 (non-AKI) to 3 (n = 343 per stage), two

distinct clusters were identified. Cluster 2 (n = 671) had significantly higher in-hospital mortality (54.7% vs.

21.9%, p < 0.001), and a greater prevalence of higher AKI stages (p < 0.001). Moreover, cluster 2 showed a

significantly greater frequency of sepsis, vasopressors and diuretics administration, chronic kidney disease,

heart failure, and also higher respiratory and heart rate, and phosphorus. Patients in cluster 2 were a little

younger and had a lower arterial O2 pressure and blood pH. A logistic regression profiling model achieved an

accuracy (95% CI) of 91.4% (89.8%, 92.8%) in predicting cluster assignment.

Conclusions: There are two clinically distinct phenotypes in patients admitted to the ICU concerning AKI with

strong prognostic implications. The findings highlight the potential of routine ICU data to enable phenotype-

based risk stratification in AKI.
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R E S U M E N

Antecedentes y objetivos: La insuficiencia renal aguda (IRA) es una complicacioń frecuente y heterogeńea entre

los pacientes críticos ingresados en la Unidad de Cuidados Intensivos (UCI), a menudo asociada a resultados

adversos. El objetivo de este estudio fue identificar los subtipos fenotípicos de los pacientes de la UCI con IRA y

evaluar su asociacioń con los resultados clínicos.
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Fenotipo

Estratificacioń del riesgo
Materiales y met́odos: Se realizo ́ un análisis secundario utilizando la base de datos MIMIC-IV, que incluye una

cohorte de adultos con diferentes estadios de LRA, así como pacientes sin LRA. Se utilizo ́ un análisis factorial

de datos mixtos, seguido de un agrupamiento jerárquico, para identificar los fenotipos de los pacientes

basándose en una amplia gama de variables clínicas, demográficas, de laboratorio y de tratamiento. El perfil

de los grupos se realizo ́ utilizando un modelo de regresioń logística multivariable.

Resultados: Entre los 1.372 pacientes distribuidos uniformemente entre los estadios 0 (sin LRA) y 3 (n =

343 por estadio), se identificaron dos grupos distintos. El grupo 2 (n = 671) presento ́ una mortalidad

hospitalaria significativamente mayor (54,7% frente a 21,9%, p < 0,001) y una mayor prevalencia de estadios

más avanzados de IRA (p < 0,001). Además, el grupo 2 mostro ́ una frecuencia significativamente mayor de

sepsis, administracioń de vasopresores y diuret́icos, enfermedad renal crońica, insuficiencia cardíaca y

tambień una frecuencia respiratoria y cardíaca más alta, y fośforo. Los pacientes del grupo 2 eran un poco más

jov́enes y tenían una presioń arterial de O2 y un pH sanguíneo más bajos. Un modelo de perfil de regresioń

logística alcanzo ́ una precisioń (IC del 95%) del 91,4% (89,8%, 92,8%) en la prediccioń de la asignacioń de

clústeres.

Conclusiones: Existen dos fenotipos clínicamente distintos en los pacientes ingresados en la UCI en relacioń

con la LRA, con fuertes implicaciones pronośticas. Los resultados ponen de relieve el potencial de los datos

rutinarios de la UCI para permitir la estratificacioń del riesgo basada en el fenotipo en la LRA.

Introduction

Acute kidney injury (AKI) is a critical condition characterized by a

sudden decline in renal function, frequently observed in the intensive

care unit (ICU). It is associated with significant morbidity and

mortality, with estimated incidence rates ranging from 15% to 40% in

critically ill populations.1 Sepsis, cardiovascular instability, nephro-

toxic drugs, and mechanical ventilation are major risk factors

contributing to AKI development.2 AKI is associated with adverse

outcomes, including prolonged ICU stays, increased need for renal

replacement therapy, and high mortality rates.3 Predicting AKI onset

and progression remains a major clinical challenge, as current risk

stratification models do not fully capture the complex nature of the

illness.4 Early detection of AKI is also essential to improve patient

outcomes through targeted therapies.5 Machine learning-based

predictive models offer a promising solution by identifying high-risk

patients, allowing for personalized risk stratification and clinical

decision-making.6

Clustering techniques provide a powerful approach to identifying

subgroups of patients with similar clinical characteristics.7 These

methods have been used to stratify patients in ICU settings, improving

diagnosis, resource allocation, and treatment strategies.8 In the

context of AKI, clustering algorithms can uncover distinct risk profiles

among ICU patients, facilitating early detection and individualized

intervention.9 Current models for AKI severity in the ICU remain

limited in their ability to comprehensively stratify patient risk due to

relying on a limited number of markers, such as serum creatinine and

urine output.10,11 There is a growing need for models that integrate

diverse patient data to improve early risk assessment.12 Heteroge-

neous, high-dimensional ICU data, which often include missing values

and noise, complicate the identification of meaningful patient

subgroups.13,14 Meanwhile, advanced machine learning approaches

have shown promise in predicting AKI but require further refinement

to enhance transparency and integration into clinical workflows.15

The development of robust interpretable clustering models could

enable more precise risk stratification of AKI.16,17

The aim of conducting this study was to develop a clustering

model that identifies distinct subgroups of ICU patients based on

their risk of developing AKI. By incorporating comprehensive

patient data, including demographics, vital signs, laboratory results,

and comorbidities, we sought to identify phenotypic subtypes

associated with AKI. The integration of clustering models into

clinical workflows has the potential to improve risk stratification,

optimize ICU resource allocation, and facilitate early detection and

personalized treatment strategies.17,18 We hypothesized that

comprehensive patient data would help to identify prognostic

clusters of patients concerning AKI.

Methods

Population

This study is a secondary analysis of cross-sectional data derived

from a large, intensive care cohort. We used the Medical Information

Mart for Intensive Care IV (MIMIC-IV, version 3.1) database, a

publicly accessible critical care dataset developed by the Massachu-

setts Institute of Technology Laboratory for Computational Physiolo-

gy in collaboration with the Beth Israel Deaconess Medical Center in

Boston, Massachusetts (https://mimic.mit.edu).19 MIMIC-IV provides

de-identified, high-resolution clinical data for patients admitted to

intensive care units between 2008 and 2022, and reflects real-world

ICU practice within a tertiary care setting. The database includes

comprehensive records, comprising patient demographics, vital signs,

laboratory measurements, comorbidities, administered therapies, and

outcome data. For this analysis, we selected a cohort of adult patients

(≥18 years) who experienced their first ICU admission, with a

minimum ICU stay of 48 h, between 2017 and 2022. This temporal

window was selected to ensure consistency with updated diagnostic

and therapeutic practices.

Candidate variables

The analytical dataset included baseline demographic variables,

pre-existing comorbid conditions, and organ system dysfunction

through a broad spectrum of laboratory measurements and physio-

logic markers representative of cardiovascular, respiratory, renal,

hepatic, and hematologic function. Additionally, data on medication

exposure – specifically the administration of vasoactive agents and

diuretics – were incorporated to reflect treatment intentions and

hemodynamic support. The predictor variables were extracted from

the first 24 h following ICU admission to represent the baseline

clinical values. Due to missing and inconsistent urine output

documentation across patient records, the urine output criteria for

AKI classification as defined by guidelines were not applied.20

Consequently, AKI stage was determined based on serum creatinine

(Cr) measurements.20 Stage 0 (no AKI) included those with no Cr

increase meeting AKI criteria and no AKI-related international

classification of diseases (ICD) diagnostic codes. This dual criterion

was applied to minimize misclassification and ensure a true non-AKI

reference group. Patients with an AKI ICD code but no creatinine rise

were excluded from Stage 0. Stage 1 was defined by an increase in Cr

to 1.5–1.9 times the baseline or an absolute rise of ≥0.3 mg/dL within

48 h. Stage 2 involved an increase in Cr to 2.0–2.9 times the baseline,

while Stage 3 was characterized by an increase in Cr to ≥3.0 times
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baseline or an absolute Cr of ≥4.0 mg/dL. Baseline serum creatinine

was defined as the first available measurement at ICU admission. Pre-

existing chronic kidney disease was identified based on ICD diagnostic

codes. To enhance cohort validity and decrease bias introduced by

incomplete data, only patients with less than 25% missing data across

study variables were included. No additional patients were excluded

from analysis. This strategy ensured data robustness while preserving

clinical heterogeneity. The final analytical sample included patients

across all four AKI severity strata (Stages 0–3). To ensure balanced

representation and facilitate unbiased phenotypic discovery across

the full spectrum of AKI severity (total n = 2281), we used an equal

sampling strategy by selecting an identical number of patients from

each AKI stage subgroup (AKI stages 0–3) for clustering analysis.

Given that the smallest subgroup, AKI Stage 2, comprised 343 patients,

we randomly selected 343 patients from each AKI stage, resulting in a

total analytical cohort of 1372 patients.

Data availability

The raw, de-identified data used in this study are publicly

accessible through the Medical Information Mart for Intensive Care IV

(MIMIC-IV) database, available at https://mimic.mit.edu.19 MIMIC-

IV is an open-access, relational database constructed from the

electronic health records of patients admitted to the Beth Israel

Deaconess Medical Center in Boston, Massachusetts. Access to the

MIMIC-IV database requires completion of appropriate training and

approval under a data use agreement to ensure responsible and ethical

utilization of sensitive health information.

Ethical considerations

This study was conducted using data from the publicly available

MIMIC-IV database, which is fully anonymized and did not involve

direct interaction with human subjects, the collection of personal

information, or any procedures requiring informed consent. The

analysis was performed following ethical standards governing the use

of publicly available clinical data. The use of the MIMIC-IV database

requires completion of ethics training, ensuring responsible handling

of sensitive health information. No raw data were republished or

redistributed in this study, and all reported findings are based solely

on aggregated analyses of the data. Our study followed the ethical

guidelines specified in the Declaration of Helsinki and received ethics

approval from the institutional review board of our university with the

reference number of IR.SBMU.RETECH.REC.1403.896. In order to

acquire access to data, we successfully completed the CITI “Data or

Specimens Only Research” course (record ID: 53106331) and signed

PhysioNet credentialed health data use agreement 1.5.0 on March 17,

2025.

Data analyses

The initial phase of analysis involved rigorous data preprocessing

to ensure completeness and reliability. Variables showing large

missingness (>20%), high cardinality, or severe binary imbalance

(<10% prevalence) were excluded. Redundant features with strong

collinearity (Spearman ρ > 0.5) were filtered to decrease the risk of

multicollinearity. This moderate threshold was chosen to prevent

collinearity-driven distortions in distance-based clustering and to

promote model parsimony suitable for clinical translation. Missing

data were imputed using predictive mean matching to preserve

distributional properties. Factorial analysis of mixed data was used to

project high-dimensional clinical data into lower-dimensional princi-

pal components. Hierarchical clustering on principal components was

applied to the transformed data to identify latent patient subgroups.

The number of clusters was suggested by the dendrogram and

supported further by average silhouette width, which quantifies intra-

cluster cohesion and inter-cluster separation. The clustering validity

was further supported by the cophenetic correlation coefficient,

which measured the efficacy of the dendrogram. Variable contribu-

tions and squared cosine (Cos2) metrics were used to identify the most

informative features. Cluster differentiation was statistically validated

through chi-squared tests comparing AKI stage and mortality

distributions. Survival characteristics across clusters were analyzed

using Kaplan–Meier survival curves with log-rank testing. To further

characterize cluster-defining features, a logistic regression model was

trained using high-importance variables identified from the clustering

phase. Hyperparameter tuning for model regularization (alpha and

lambda) was performed via 10-fold cross-validation. Classification

performance with 10-fold cross-validation was evaluated using the

area under the ROC curve (AUC), sensitivity, specificity, accuracy,

kappa statistic, and positive/negative predictive values. A confusion

matrix was used to assess classification agreement.

Results

Sample

The sample included 1372 patients with AKI severity evenly

distributed across stages 0–3 (n = 343 per stage). The median follow-

up time was 5.5 days with an interquartile range of 3.1–11.9 days.

There were no duplicate rows in the study dataset. Fig. 1 illustrates the

initial variables and the patterns of missing data. In total, 11.4% of the

initial data were missing. We then excluded variables with >20%

missing data from further analysis: cardiac output, C-reactive protein,

direct bilirubin, central venous pressure, arterial O2 saturation, serum

albumin, and marital status. Furthermore, the variable race was

excluded due to its high cardinality (30 levels). Binary features were

also evaluated for imbalance, and those with fewer than 10% positive

cases were excluded from the analysis. Specifically, among comorbid-

ities, liver disease (3.7% positive), type 1 diabetes mellitus (2.2%),

cerebrovascular disease (1.2%), and acute myocardial infarction

(0.4%) were excluded. Similarly, medication use variables of

dobutamine (4.6%), milrinone (3.1%), dopamine (1.5%), and

bumetanide (1.3%) were also excluded due to low prevalence.

Fig. 2 illustrates the heatmap of correlations among the study

variables using Spearman’s correlation coefficients. There were large

and statistically significant correlation between ALT and AST

(ρ = 0.86), serum chloride and sodium (ρ = 0.63), norepinephrine

and vasopressin (ρ = 0.61), systolic and diastolic blood pressure

(ρ = 0.57), prothrombin time and total bilirubin (ρ = 0.55), arterial

CO2 pressure and PH (ρ = −0.51), all p < 0.01. To reduce redundancy

and decrease the risk of multicollinearity, we excluded one variable

from each pair of the correlated features. Specifically, we excluded

AST, serum chloride, vasopressin, diastolic blood pressure, total

bilirubin, and arterial CO2 pressure. These selections were based on

clinical relevance, physiological specificity, and the goal of retaining

the variable that provides broader or more direct insight into patient

status. The remaining data contained only 3.8% missing values, which

were imputed using predictive mean matching.

Clustering

Fig. 3A presents a scatter plot of the first and second principal

components, with deceased patients indicated in black. A greater

concentration of deceased patients is observed on the right side of the

plot, suggesting an association between the first component and

mortality. Similarly, Fig. 3B displays the same scatter plot colored

according to AKI stages (0–3). Patients with lower AKI stages are

predominantly located on the left side of the plot. Stages 1 and 2 show

substantial overlap, particularly along the first principal component.

Hierarchical clustering on principal components best suggested the
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presence of two clusters (Fig. 3C). The average silhouette width was

0.56, indicating moderately well-separated clusters. The cophenetic

correlation coefficient was 0.59, suggesting that the hierarchical

clustering dendrogram reasonably preserved the original distance

structure. Fig. 3D presents a scatter plot illustrating the results of the

hierarchical clustering. Fig. 3E and F illustrate the variable

contributions and the squared cosine (Cos2) values of the variables,

respectively, indicating that the clusters can be effectively distin-

guished using a subset of patient features. The clear separation

between the two cluster centroids, together with the distribution of

clinical severity along the first principal component, indicates that the

clustering scheme may hold prognostic significance. Cluster 1 includ-

ed 701 patients, and cluster 2 included 671 patients. Cluster

1 included 314 (44.8%), 159 (22.7%), 148 (21.1%), and 80

(11.4%) patients with AKI stages 0, 1, 2, and 3, respectively, while

cluster 2 included 29 (4.3%), 184 (27.4%), 195 (29.1%), and 263

(39.2%) patients across the same stages. There was a significant

difference in the distribution of AKI severity between the clusters,

χ
2(3) = 342.210, p < 0.001. There was also a statistically significant

difference in mortality rates between clusters 1 (145 deaths; 21.9%)

and 2 (367 deaths; 54.7%), χ
2(1) = 154.500, p < 0.001, odds ratio

(95% CI) = 4.28 (3.39, 5.42). Overall, cluster 2 was a high-risk

4
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Fig. 2. The heatmap of pairwise Spearman’s correlations among study variables.
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subgroup of patients with greater AKI severity and higher mortality,

signifying a poorer prognosis compared with cluster 1. Fig. 4A

demonstrates a significant difference in 30-day survival probability

between the two clusters, as confirmed by the log-rank test.

Cluster profiling

We developed a logistic regression model to evaluate the

discriminative ability of the two clusters using the features identified

as important in the cluster analysis. Hyperparameter tuning via 10-

fold cross-validation identified the optimal logistic regression model

parameters with an alpha of 0.100 and a lambda of 0.044. Table 1

presents the logistic regression model showing variables that

differentiate the two clusters and identify a distinct high-risk

phenotype. Variables related to critical illness severity – such as

sepsis, vasopressor use, chronic comorbidities (e.g., chronic kidney

disease and heart failure), and markers of organ dysfunction – were

strongly associated with membership in the high-risk cluster. The

regression coefficients and odds ratios indicate that these features are

powerful predictors of cluster assignment. Additionally, elevated

respiratory and heart rates were statistically significant, further

supporting the physiological distinctiveness of this group. In contrast,

higher arterial oxygen levels, normal pH, and older age were

negatively associated with high-risk cluster membership. These

5
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Fig. 3. (A) Scatter plot of the first two principal components, with deceased patients marked in black. A higher frequency of deceased patients is visible on the right side of

the plot, indicating an association between the first component and mortality. (B) Scatter plot of the first two principal components colored by AKI stages (0–3). Patients

with lower AKI stages are represented mainly on the left, with stages 1 and 2 overlapping along the first principal component. (C) Dendrogram from hierarchical clustering

performed on the principal components, suggesting two distinct patient clusters. (D) Scatter plot showing patient clusters derived from hierarchical clustering on principal

components. (E) Variable contributions to the clustering, highlighting patient features that distinguish the two clusters above the average contribution (indicated by the

dashed red line). (F) Squared cosine (Cos2) values for the variables, indicating the quality of variable representation.
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statistical patterns may help clinicians identify ICU patients with

phenotypic features compatible with more severe AKI trajectories.

Model performance was evaluated using 10-fold cross-validation.

Fig. 4B presents the model’s performance, as measured by the area

under the ROC curve (AUC). The large AUC demonstrated the model’s

strong performance in distinguishing the two clusters, thereby

validating the effectiveness of the clustering scheme. Table 2

summarizes the diagnostic performance of the model in identifying

the positive class (class 2) among the clustered patients. The logistic

model demonstrated strong and balanced classification performance,

effectively distinguishing between the two clusters with high

concordance between predicted and actual labels. The diagnostic

accuracy indicates minimal systematic bias in misclassification.

Overall, these results support the model’s reliability and robustness

in identifying the two patient profiles.

Discussion

This study aimed to identify phenotypes of ICU patients concerning

AKI through a data-driven clustering framework, hypothesizing that

multidimensional patient profiles could identify prognostically

meaningful subgroups beyond conventional AKI staging. The findings

confirmed the presence of distinct clinical clusters associated with

varying degrees of physiologic derangement and outcome risk. By

incorporating a wide range of clinical, laboratory, and therapeutic

variables, the clustering model captured heterogeneity that is not

reflected in serum creatinine-based staging systems. The unsupervised

6
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Fig. 4. (A) Kaplan–Meier survival curves showing 30-day survival probability for

the two clusters. A significant difference between clusters was observed by the log-

rank test, with cluster 2 showing higher mortality. (B) Receiver operating

characteristic (ROC) curve illustrating the performance of the logistic model in

discriminating between the two clusters. The area under the curve (AUC)

demonstrates strong model accuracy and robustness.

Table 1

The logistic model for cluster profiling.

Characteristic Total Cluster 1 Cluster 2 Coeff. (SD) AOR (95% CI) p

Sepsis (%) 523 (38.1) 87 (12.4) 436 (65.0) 3.663 (0.305) 38.98 (21.42, 70.93) <0.001*

Norepinephrine (%) 596 (43.4) 147 (21.0) 449 (66.9) 2.815 (0.317) 16.7 (8.97, 31.06) <0.001*

Chronic kidney disease (%) 336 (24.5) 98 (14.0) 238 (35.5) 2.694 (0.324) 14.79 (7.84, 27.9) <0.001*

Heart failure (%) 443 (32.3) 156 (22.3) 287 (42.8) 2.573 (0.31) 13.11 (7.14, 24.07) <0.001*

Respiratory failure (%) 731 (53.3) 246 (35.1) 485 (72.3) 1.874 (0.255) 6.52 (3.95, 10.74) <0.001*

Epinephrine (%) 177 (12.9) 55 (7.8) 122 (18.2) 1.53 (0.445) 4.62 (1.93, 11.05) 0.001*

Phosphorus (mg/dL) 4.4 (2.0) 3.7 (1.4) 5.2 (2.2) 0.691 (0.077) 2.00 (1.72, 2.32) <0.001*

Furosemide (%) 642 (46.8) 275 (39.2) 367 (54.7) 0.638 (0.286) 1.89 (1.08, 3.31) 0.026*

Phenylephrine (%) 482 (35.1) 221 (31.5) 261 (38.9) 0.192 (0.287) 1.21 (0.69, 2.13) 0.505

Respiratory rate (insp/min) 19.9 (6.9) 17.7 (5.8) 22.2 (7.1) 0.119 (0.02) 1.13 (1.08, 1.17) <0.001*

Heart rate (bpm) 91.7 (21.0) 84.6 (17.2) 99.2 (22.0) 0.069 (0.008) 1.07 (1.06, 1.09) <0.001*

Magnesium (mg/dL) 2.2 (0.7) 2.2 (0.6) 2.2 (0.7) 0.068 (0.184) 1.07 (0.75, 1.54) 0.712

Arterial O2 pressure (mmHg) 179.3 (112.6) 220.2 (120.5) 136.6 (84.9) −0.01 (0.001) 0.99 (0.99, 0.99) <0.001*

Age (year) 60.1 (14.0) 60.3 (13.6) 60.0 (14.3) −0.022 (0.009) 0.98 (0.96, 1.00) 0.013*

pH (units) 7.3 (0.1) 7.4 (0.1) 7.3 (0.1) −12.946 (1.516) 0.00 (0.00, 0.00) <0.001*

SD, standard deviation; AOR, adjusted odds ratio.
* Significant at p < 0.001.

Table 2

Confusion matrix and performance metrics for the study logistic model (positive

class = class 2).

Reference

Cluster 1 Cluster 2

Confusion matrix

Prediction

Cluster 1 642 59

Cluster 2 59 612
Performance metrics

Accuracy (95% CI) 0.914 (0.898, 0.928)

No information rate 0.511

[Accuracy >no information rate] p <0.001*

Kappa 0.8279

Sensitivity 0.912

Specificity 0.916

Positive predictive value 0.912

Negative predictive value 0.916

Area under the curve 0.976

* Significant at p < 0.001.
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learning strategy revealed a high-risk cluster characterized by

systemic inflammation, cardiovascular compromise, and multiorgan

dysfunction. The logistic profiling model demonstrated that features

such as sepsis, chronic kidney disease, heart failure, respiratory

failure, and vasopressor use – particularly norepinephrine and

epinephrine – were strongly associated with this high-risk cluster.

Additionally, elevated serum phosphorus, increased respiratory and

heart rates, and loop diuretic administration further contributed to the

cluster differentiation, suggesting a convergence of hemodynamic

instability and therapeutic intensity. In contrast, parameters such as

higher arterial oxygenation and a higher blood pH appeared inversely

associated with the high-risk phenotype, reinforcing the multidimen-

sional nature of critical illness severity. This methodology enabled

precise identification of vulnerable ICU populations and provided a

foundation for future phenotype-targeted strategies in critical care

settings.

Recent studies have supported the application of unsupervised

machine learning in identifying phenotypically distinct subtypes

among ICU patients with AKI. A study on dialysis-requiring AKI

showed that phenotypes characterized by systemic inflammation,

hemodynamic instability, and organ dysfunction correlate with

significantly worse outcomes.21 Deep learning-based models have

also suggested clinically meaningful AKI subgroups with differential

mortality risks, highlighting the limitations of serum creatinine-based

staging alone.22 Tan et al. found AKI phenotypes with variable

trajectories and clinical patterns, which could not be captured using

KDIGO criteria alone.23 Meanwhile, compared with the seven

subgroups identified by Tan et al., our identification of a smaller

number of clinically distinct clusters enhances practical applicability

by facilitating straightforward risk stratification and bedside imple-

mentation. Smith et al. suggested that AKI is a multifactorial

syndrome best understood via longitudinal and multivariate modeling

rather than conventional creatinine thresholds.24 Thongprayoon et al.

also used clustering in an AKI population and found distinct clusters

with divergent comorbidities and laboratory profiles associated with

outcomes, supporting our multimodal data integration.25 However,

both Tan et al. and Thongprayoon et al. did not include patients

without AKI in their sample. Our use of routinely collected ICU data

supports prior work suggesting that early AKI risk can be predicted

using accessible variables, enabling real-time clinical application.26

Our cluster-based prognostic differentiation is consistent with studies

emphasizing the importance of AKI subtyping for guiding personal-

ized treatment approaches.27 Overall, the findings of this study are

congruent with – and further reinforce – the growing body of evidence

supporting phenotype-driven stratification in critical care practice.

The distinct clinical variables that separated the high- and low-risk

AKI phenotypes in our study reflect pathophysiologic mechanisms

driving organ dysfunction in critical illness. Sepsis, a dominant feature

in the high-risk cluster, contributes to AKI through a combination of

systemic inflammation, microvascular dysregulation, and mitochon-

drial dysfunction, leading to renal tubular cell stress and apoptosis.28

The use of vasopressors, particularly norepinephrine, while critical for

maintaining perfusion, reflects the severity of shock and often

exacerbates renal hypoperfusion and endothelial injury via excessive

vasoconstriction and impaired autoregulation.29 Chronic kidney

disease, more prevalent in our high-risk group, predisposes patients

to AKI through maladaptive repair, capillary rarefaction, and pre-

existing nephron loss, creating a vulnerability to sepsis and

nephrotoxins.30 Heart failure compounds renal injury through

elevated venous pressures, reduced cardiac output, and neurohor-

monal activation, which reduce glomerular filtration via altered

transcapillary pressures.31 Respiratory failure and mechanical

ventilation contribute to AKI through hypoxia, inflammation, and

elevated intrathoracic pressures that impair renal perfusion and

venous return.32 Low blood pH further disrupts cellular metabolism,

enhances inflammation, and impairs myocardial contractility,

exacerbating multiorgan dysfunction and correlating with higher

mortality risk.33 Also, hyperphosphatemia, observed in the high-risk

cluster, reflects cellular breakdown, impaired renal clearance, and

systemic catabolism, all of which are markers of severe illness and

poor prognosis.34 Age appeared inversely associated with high-risk

cluster membership, suggesting that younger patients in our cohort

were more frequently represented among those with severe acute

physiologic disturbances. This pattern may reflect the predominance

of high-intensity conditions such as sepsis, multiorgan failure, and

vasopressor-dependent shock in younger individuals, who might

develop more pronounced inflammatory and hemodynamic

responses. Conversely, older patients, while burdened with chronic

comorbidities, may experience less abrupt physiologic deterioration

during ICU admission, aligning with the lower-risk phenotype.35

Together with higher arterial oxygenation and normal pH, these

features may represent relative protective factors within the

multidimensional context of AKI severity. Overall, these variables

represent interrelated pathophysiological pathways connecting car-

diovascular compromise, metabolic derangement, and inflammation,

supporting the biological plausibility and clinical applicability of our

phenotypic classification.

Clinical implications

This study presented evidence that AKI phenotypic profiling

provides enhanced risk stratification relative to conventional serum

creatinine-based staging by integrating a broader spectrum of

patients’ clinical characteristics. We suggested that high-risk patients

can be identified using routinely available clinical data, enabling

timely risk recognition. The strong discriminative performance of the

logistic model supports the feasibility of building real-time clinical

decision support tools to stratify ICU patients into phenotypic clusters

at admission. These phenotypic profiles could guide tailored

interventions; for example, patients in the high-risk cluster may

benefit from closer monitoring, early nephrology consultation, and

aggressive hemodynamic and metabolic optimization. This two-

cluster approach may improve prognostic accuracy, facilitate

communication with families, and support shared decision-making,

compared with the conventional four-stage severity classification.

Phenotype-guided research and trials enable the design of more

targeted therapies and personalized treatment strategies in AKI

management.

Limitations

This study had several limitations that warrant consideration. The

analysis was based on retrospective data, which may introduce biases

inherent to observational studies, such as unmeasured confounding

factors. Although the clustering approach was unsupervised, selection

bias related to missing data and variable exclusion criteria cannot be

fully eliminated. Nevertheless, the data preprocessing ensured

statistical integrity by removing highly imbalanced or collinear

variables and applying robust imputation techniques. Race can affect

the generalizability of research findings to other populations.

However, we excluded it due to its high cardinality, sparse

distribution, and inconsistent documentation, which could distort

factor projections and bias cluster centroids. Our analysis focused

primarily on physiological and biochemical variables rather than

sociodemographic determinants. Comorbidity variables with fewer

than 10% positive cases were also excluded to prevent statistical

sparsity and instability in the factorial analysis. Inclusion of rare

features can distort covariance structures and compromise cluster

reproducibility. The exclusion preserved statistical power, ensured

meaningful variable contributions to multidimensional variance, and

enhanced clinical interpretability of the resulting phenotypes. We

used advanced unsupervised learning for phenotype discovery,
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provided equal representation of AKI severity stages, and internally

validated both clustering and classification performance. While these

features support the robustness and translational potential of the

findings, external validation with an independent dataset is still

needed to confirm the generalizability and reproducibility of the

model across diverse populations and clinical settings.

Conclusion

This study identified two clinically and prognostically distinct

phenotypic subgroups among ICU patients concerning AKI using a

data-driven clustering approach applied to high-dimensional clinical

data from the MIMIC-IV database. Unlike conventional AKI staging

systems that rely on serum creatinine or urine output, our model

integrated a wide range of clinical, laboratory, and treatment

variables to identify latent patient profiles with significantly different

outcomes. The high-risk cluster was characterized by a higher

prevalence of sepsis, chronic kidney disease, heart failure, vasopressor

use, respiratory failure, and derangements in vital signs and metabolic

parameters, all of which were strongly predictive of mortality and

severe AKI progression. Our logistic profiling model showed high

performance in distinguishing between clusters, confirming the

clinical validity of the phenotypic stratification. The ability to detect

these phenotypes using routinely collected ICU data suggests that real-

time clinical implementation is feasible, offering opportunities to

enhance early identification, personalize management strategies, and

guide more informed communication with patients and families.

These findings support a shift toward phenotype-based risk stratifica-

tion and personalized intervention in critical care and highlight the

translational potential of machine learning tools in improving AKI

outcomes.
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