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Highlights  

 We identified two distinct AKI phenotypes in ICU patients using clustering analysis. 

 The high-risk cluster showed significantly higher mortality and AKI severity. 

 Sepsis, chronic kidney disease, and vasopressor use were key features of the high-risk 

phenotype. 

 Respiratory and cardiovascular failure were more prevalent in high-risk patients. 

 Findings may guide personalized treatment and trial design in ICU-AKI care. 

 

Abstract 

Background and objectives: Acute kidney injury (AKI) is a frequent and heterogeneous 

complication among critically ill patients in the intensive care unit (ICU), often associated with 

adverse outcomes. This study aimed to identify phenotypic subtypes of ICU patients with AKI 

and to evaluate their association with clinical outcomes. 
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Materials and methods: A secondary analysis was conducted using the MIMIC-IV database, 

including a cohort of adults with varying stages of AKI, as well as patients without AKI. 

Factorial analysis of mixed data, followed by hierarchical clustering, was used to identify patient 

phenotypes based on a wide range of clinical, demographic, laboratory, and treatment variables. 

Cluster profiling was conducted using a multivariable logistic regression model. 

Results: Among 1,372 patients evenly distributed across stages 0 (non-AKI) to 3 (n=343 per 

stage), two distinct clusters were identified. Cluster 2 (n =671) had significantly higher in-

hospital mortality (54.7% vs. 21.9%, p<0.001), and a greater prevalence of higher AKI stages 

(p<0.001). Moreover, cluster 2 showed a significantly greater frequency of sepsis, vasopressors 

and diuretics administration, chronic kidney disease, heart failure, and also higher respiratory 

and heart rate, and phosphorus. Patients in cluster 2 were a little younger and had a lower arterial 

O2 pressure and blood pH. A logistic regression profiling model achieved an accuracy (95% CI) 

of 91.4%(89.8%, 92.8%) in predicting cluster assignment. 

Conclusions: There are two clinically distinct phenotypes in patients admitted to the ICU 

concerning AKI with strong prognostic implications. The findings highlight the potential of 

routine ICU data to enable phenotype-based risk stratification in AKI. 

Keywords: Acute Kidney Injury; Intensive Care Unit; Sepsis; Clustering; Phenotype; Risk 

Stratification 

 

Introduction    

Acute Kidney Injury (AKI) is a critical condition characterized by a sudden decline in renal 

function, frequently observed in the intensive care unit (ICU). It is associated with significant 

morbidity and mortality, with estimated incidence rates ranging from 15% to 40% in critically ill 
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populations 1. Sepsis, cardiovascular instability, nephrotoxic drugs, and mechanical ventilation 

are major risk factors contributing to AKI development 2. AKI is associated with adverse 

outcomes, including prolonged ICU stays, increased need for renal replacement therapy, and 

high mortality rates 3. Predicting AKI onset and progression remains a major clinical challenge, 

as current risk stratification models do not fully capture the complex nature of the illness 4. Early 

detection of AKI is also essential to improve patient outcomes through targeted therapies 5. 

Machine learning-based predictive models offer a promising solution by identifying high-risk 

patients, allowing for personalized risk stratification and clinical decision-making 6. 

Clustering techniques provide a powerful approach to identifying subgroups of patients with 

similar clinical characteristics 7. These methods have been used to stratify patients in ICU 

settings, improving diagnosis, resource allocation, and treatment strategies 8. In the context of 

AKI, clustering algorithms can uncover distinct risk profiles among ICU patients, facilitating 

early detection and individualized intervention 9. Current models for AKI severity in the ICU 

remain limited in their ability to comprehensively stratify patient risk due to relying on a limited 

number of markers, such as serum creatinine and urine output 10,11. There is a growing need for 

models that integrate diverse patient data to improve early risk assessment 12. Heterogeneous, 

high-dimensional ICU data, which often include missing values and noise, complicate the 

identification of meaningful patient subgroups 13,14. Meanwhile, advanced machine learning 

approaches have shown promise in predicting AKI but require further refinement to enhance 

transparency and integration into clinical workflows 15. The development of robust interpretable 

clustering models could enable more precise risk stratification of AKI 16,17.  

The aim of conducting this study was to develop a clustering model that identifies distinct 

subgroups of ICU patients based on their risk of developing AKI. By incorporating 



Page 5 of 31

Jo
ur

na
l P

re
-p

ro
of

5 

 

comprehensive patient data, including demographics, vital signs, laboratory results, and 

comorbidities, we sought to identify phenotypic subtypes associated with AKI. The integration 

of clustering models into clinical workflows has the potential to improve risk stratification, 

optimize ICU resource allocation, and facilitate early detection and personalized treatment 

strategies 17,18. We hypothesized that comprehensive patient data would help to identify 

prognostic clusters of patients concerning AKI.  

 

 

 

 

 

 

 

 

 

Methods 

Population 

This study is a secondary analysis of cross-sectional data derived from a large, intensive care 

cohort. We used the Medical Information Mart for Intensive Care IV (MIMIC-IV, version 3.1) 
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database, a publicly accessible critical care dataset developed by the Massachusetts Institute of 

Technology Laboratory for Computational Physiology in collaboration with the Beth Israel 

Deaconess Medical Center in Boston, Massachusetts (https://mimic.mit.edu) 19. MIMIC-IV 

provides de-identified, high-resolution clinical data for patients admitted to intensive care units 

between 2008 and 2022, and reflects real-world ICU practice within a tertiary care setting. The 

database includes comprehensive records, comprising patient demographics, vital signs, 

laboratory measurements, comorbidities, administered therapies, and outcome data. For this 

analysis, we selected a cohort of adult patients (≥18 years) who experienced their first ICU 

admission, with a minimum ICU stay of 48 hours, between 2017 and 2022. This temporal 

window was selected to ensure consistency with updated diagnostic and therapeutic practices.  

Candidate Variables 

The analytical dataset included baseline demographic variables, pre-existing comorbid 

conditions, and organ system dysfunction through a broad spectrum of laboratory measurements 

and physiologic markers representative of cardiovascular, respiratory, renal, hepatic, and 

hematologic function. Additionally, Data on medication exposure—specifically the 

administration of vasoactive agents and diuretics—were incorporated to reflect treatment 

intentions and hemodynamic support. The predictor variables were extracted from the first 24 

hours following ICU admission to represent the baseline clinical values. Due to missing and 

inconsistent urine output documentation across patient records, the urine output criteria for AKI 

classification as defined by guidelines were not applied 20. Consequently, AKI stage was 

determined based on serum creatinine (Cr) measurements 20. Stage 0 (No AKI) included those 

with no Cr increase meeting AKI criteria and no AKI-related international classification of 

diseases (ICD) diagnostic codes. This dual criterion was applied to minimize misclassification 
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and ensure a true non-AKI reference group. Patients with an AKI ICD code but no creatinine rise 

were excluded from stage 0. Stage 1 was defined by an increase in Cr to 1.5–1.9 times the 

baseline or an absolute rise of ≥0.3 mg/dL within 48 hours. Stage 2 involved an increase in Cr to 

2.0–2.9 times the baseline, while Stage 3 was characterized by an increase in Cr to ≥3.0 times 

baseline or an absolute Cr of ≥4.0 mg/dL. Baseline serum creatinine was defined as the first 

available measurement at ICU admission. Pre-existing chronic kidney disease was identified 

based on ICD diagnostic codes. To enhance cohort validity and decrease bias introduced by 

incomplete data, only patients with less than 25% missing data across study variables were 

included. No additional patients were excluded from analysis. This strategy ensured data 

robustness while preserving clinical heterogeneity. The final analytical sample included patients 

across all four AKI severity strata (Stages 0-3). To ensure balanced representation and facilitate 

unbiased phenotypic discovery across the full spectrum of AKI severity (total N = 2281), we 

used an equal sampling strategy by selecting an identical number of patients from each AKI 

stage subgroup (AKI stages 0–3) for clustering analysis. Given that the smallest subgroup, AKI 

stage 2, comprised 343 patients, we randomly selected 343 patients from each AKI stage, 

resulting in a total analytical cohort of 1,372 patients.  

Data Availability 

The raw, de-identified data used in this study are publicly accessible through the Medical 

Information Mart for Intensive Care IV (MIMIC-IV) database, available at 

https://mimic.mit.edu19. MIMIC-IV is an open-access, relational database constructed from the 

electronic health records of patients admitted to the Beth Israel Deaconess Medical Center in 

Boston, Massachusetts. Access to the MIMIC-IV database requires completion of appropriate 
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training and approval under a data use agreement to ensure responsible and ethical utilization of 

sensitive health information. 

Ethical Considerations 

This study was conducted using data from the publicly available MIMIC-IV database, which is 

fully anonymized and did not involve direct interaction with human subjects, the collection of 

personal information, or any procedures requiring informed consent. The analysis was performed 

following ethical standards governing the use of publicly available clinical data. The use of the 

MIMIC-IV database requires completion of ethics training, ensuring responsible handling of 

sensitive health information. No raw data were republished or redistributed in this study, and all 

reported findings are based solely on aggregated analyses of the data. Our study followed the 

ethical guidelines specified in the Declaration of Helsinki and received ethics approval from the 

institutional review board of our university with the reference number of 

IR.SBMU.RETECH.REC.1403.896. In order to acquire access to data, we successfully 

completed the CITI “Data or Specimens Only Research” course (record ID: 53106331) and 

signed PhysioNet credentialed health data use agreement 1.5.0 on March 17, 2025. 

Data Analyses 

The initial phase of analysis involved rigorous data preprocessing to ensure completeness and 

reliability. Variables showing large missingness (>20%), high cardinality, or severe binary 

imbalance (<10% prevalence) were excluded. Redundant features with strong collinearity 

(Spearman ρ >0.5) were filtered to decrease the risk of multicollinearity. This moderate threshold 

was chosen to prevent collinearity-driven distortions in distance-based clustering and to promote 

model parsimony suitable for clinical translation. Missing data were imputed using predictive 

mean matching to preserve distributional properties. Factorial analysis of mixed data was used to 



Page 9 of 31

Jo
ur

na
l P

re
-p

ro
of

9 

 

project high-dimensional clinical data into lower-dimensional principal components. 

Hierarchical clustering on principal components was applied to the transformed data to identify 

latent patient subgroups. The number of clusters was suggested by the dendrogram and supported 

further by average silhouette width, which quantifies intra-cluster cohesion and inter-cluster 

separation. The clustering validity was further supported by the cophenetic correlation 

coefficient, which measured the efficacy of the dendrogram. Variable contributions and squared 

cosine (Cos²) metrics were used to identify the most informative features. Cluster differentiation 

was statistically validated through chi-squared tests comparing AKI stage and mortality 

distributions. Survival characteristics across clusters were analyzed using Kaplan–Meier survival 

curves with log-rank testing. To further characterize cluster-defining features, a logistic 

regression model was trained using high-importance variables identified from the clustering 

phase. Hyperparameter tuning for model regularization (alpha and lambda) was performed via 

10-fold cross-validation. Classification performance with 10-fold cross-validation was evaluated 

using the area under the ROC curve (AUC), sensitivity, specificity, accuracy, kappa statistic, and 

positive/negative predictive values. A confusion matrix was used to assess classification 

agreement. 

 

 

 

Results 

Sample 
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The sample included 1,372 patients with AKI severity evenly distributed across stages 0 to 3 (n = 

343 per stage). The median follow-up time was 5.5 days with an interquartile range of 3.1 to 11.9 

days. There were no duplicate rows in the study dataset. Figure 1 illustrates the initial variables 

and the patterns of missing data. In total, 11.4% of the initial data were missing. We then 

excluded variables with >20% missing data from further analysis: cardiac output, C-reactive 

protein, direct bilirubin, central venous pressure, arterial O₂ saturation, serum albumin, and 

marital status. Furthermore, the variable race was excluded due to its high cardinality (30 levels). 

Binary features were also evaluated for imbalance, and those with fewer than 10% positive cases 

were excluded from the analysis. Specifically, among comorbidities, liver disease (3.7% 

positive), type 1 diabetes mellitus (2.2%), cerebrovascular disease (1.2%), and acute myocardial 

infarction (0.4%) were excluded. Similarly, medication use variables of dobutamine (4.6%), 

milrinone (3.1%), dopamine (1.5%), and bumetanide (1.3%) were also excluded due to low 

prevalence. Figure 2 illustrates the heatmap of correlations among the study variables using 

Spearman's correlation coefficients. There were large and statistically significant correlation 

between ALT and AST (ρ = 0.86), serum chloride and sodium (ρ = 0.63), norepinephrine and 

vasopressin (ρ = 0.61), systolic and diastolic blood pressure (ρ = 0.57), prothrombin time and 

total bilirubin (ρ = 0.55), arterial CO2 pressure and PH (ρ = ̶ 0.51), all p <0.01. To reduce 

redundancy and decrease the risk of multicollinearity, we excluded one variable from each pair 

of the correlated features. Specifically, we excluded AST, serum chloride, vasopressin, diastolic 

blood pressure, total bilirubin, and arterial CO₂ pressure. These selections were based on clinical 

relevance, physiological specificity, and the goal of retaining the variable that provides broader 

or more direct insight into patient status. The remaining data contained only 3.8% missing 

values, which were imputed using predictive mean matching. 
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Clustering 

Figure 3A presents a scatter plot of the first and second principal components, with deceased 

patients indicated in black. A greater concentration of deceased patients is observed on the right 

side of the plot, suggesting an association between the first component and mortality. Similarly, 

Figure 3B displays the same scatter plot colored according to AKI stages (0 to 3). Patients with 

lower AKI stages are predominantly located on the left side of the plot. Stages 1 and 2 show 

substantial overlap, particularly along the first principal component. Hierarchical clustering on 

principal components best suggested the presence of two clusters (Figure 3C). The average 

silhouette width was 0.56, indicating moderately well-separated clusters. The cophenetic 

correlation coefficient was 0.59, suggesting that the hierarchical clustering dendrogram 

reasonably preserved the original distance structure. Figure 3D presents a scatter plot illustrating 

the results of the hierarchical clustering. Figures 3E and 3F illustrate the variable contributions 

and the squared cosine (Cos²) values of the variables, respectively, indicating that the clusters 

can be effectively distinguished using a subset of patient features. The clear separation between 

the two cluster centroids, together with the distribution of clinical severity along the first 

principal component, indicates that the clustering scheme may hold prognostic significance. 

Cluster 1 included 701 patients, and cluster 2 included 671 patients. Cluster 1 included 314 

(44.8%), 159 (22.7%), 148 (21.1%), and 80 (11.4%) patients with AKI stages 0, 1, 2, and 3, 

respectively, while cluster 2 included 29 (4.3%), 184 (27.4%), 195 (29.1%), and 263 (39.2%) 

patients across the same stages. There was a significant difference in the distribution of AKI 

severity between the clusters, χ²(3) = 342.210, p < 0.001. There was also a statistically 

significant difference in mortality rates between clusters 1 (145 deaths; 21.9%) and 2 (367 

deaths; 54.7%), χ²(1) = 154.500, p < 0.001, odds ratio (95% CI) = 4.28 (3.39, 5.42). Overall, 
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cluster 2 was a high-risk subgroup of patients with greater AKI severity and higher mortality, 

signifying a poorer prognosis compared with cluster 1. Figure 4A demonstrates a significant 

difference in 30-day survival probability between the two clusters, as confirmed by the log-rank 

test. 

Cluster Profiling 

We developed a logistic regression model to evaluate the discriminative ability of the two 

clusters using the features identified as important in the cluster analysis. Hyperparameter tuning 

via 10-fold cross-validation identified the optimal logistic regression model parameters with an 

alpha of 0.100 and a lambda of 0.044. Table 1 presents the logistic regression model showing 

variables that differentiate the two clusters and identify a distinct high-risk phenotype. Variables 

related to critical illness severity—such as sepsis, vasopressor use, chronic comorbidities (e.g., 

chronic kidney disease and heart failure), and markers of organ dysfunction—were strongly 

associated with membership in the high-risk cluster. The regression coefficients and odds ratios 

indicate that these features are powerful predictors of cluster assignment. Additionally, elevated 

respiratory and heart rates were statistically significant, further supporting the physiological 

distinctiveness of this group. In contrast, higher arterial oxygen levels, normal pH, and older age 

were negatively associated with high-risk cluster membership. These statistical patterns may help 

clinicians identify ICU patients with phenotypic features compatible with more severe AKI 

trajectories. Model performance was evaluated using 10-fold cross-validation. Figure 4B 

presents the model's performance, as measured by the area under the ROC curve (AUC). The 

large AUC demonstrated the model’s strong performance in distinguishing the two clusters, 

thereby validating the effectiveness of the clustering scheme. Table 2 summarizes the diagnostic 

performance of the model in identifying the positive class (class 2) among the clustered patients. 
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The logistic model demonstrated strong and balanced classification performance, effectively 

distinguishing between the two clusters with high concordance between predicted and actual 

labels. The diagnostic accuracy indicates minimal systematic bias in misclassification. Overall, 

these results support the model’s reliability and robustness in identifying the two patient profiles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion    
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This study aimed to identify phenotypes of ICU patients concerning AKI through a data-driven 

clustering framework, hypothesizing that multidimensional patient profiles could identify 

prognostically meaningful subgroups beyond conventional AKI staging. The findings confirmed 

the presence of distinct clinical clusters associated with varying degrees of physiologic 

derangement and outcome risk. By incorporating a wide range of clinical, laboratory, and 

therapeutic variables, the clustering model captured heterogeneity that is not reflected in serum 

creatinine-based staging systems. The unsupervised learning strategy revealed a high-risk cluster 

characterized by systemic inflammation, cardiovascular compromise, and multi-organ 

dysfunction. The logistic profiling model demonstrated that features such as sepsis, chronic 

kidney disease, heart failure, respiratory failure, and vasopressor use—particularly 

norepinephrine and epinephrine—were strongly associated with this high-risk cluster. 

Additionally, elevated serum phosphorus, increased respiratory and heart rates, and loop diuretic 

administration further contributed to the cluster differentiation, suggesting a convergence of 

hemodynamic instability and therapeutic intensity. In contrast, parameters such as higher arterial 

oxygenation and a higher blood pH appeared inversely associated with the high-risk phenotype, 

reinforcing the multidimensional nature of critical illness severity. This methodology enabled 

precise identification of vulnerable ICU populations and provided a foundation for future 

phenotype-targeted strategies in critical care settings. 

Recent studies have supported the application of unsupervised machine learning in identifying 

phenotypically distinct subtypes among ICU patients with AKI. A study on dialysis-requiring 

AKI showed that phenotypes characterized by systemic inflammation, hemodynamic instability, 

and organ dysfunction correlate with significantly worse outcomes 21. Deep learning-based 

models have also suggested clinically meaningful AKI subgroups with differential mortality 
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risks, highlighting the limitations of serum creatinine-based staging alone 22. Tan et al. found 

AKI phenotypes with variable trajectories and clinical patterns, which could not be captured 

using KDIGO criteria alone 23. Meanwhile, compared with the seven subgroups identified by 

Tan et al., our identification of a smaller number of clinically distinct clusters enhances practical 

applicability by facilitating straightforward risk stratification and bedside implementation. Smith 

et al. suggested that AKI is a multifactorial syndrome best understood via longitudinal and 

multivariate modeling rather than conventional creatinine thresholds 24. Thongprayoon et al. also 

used clustering in an AKI population and found distinct clusters with divergent comorbidities 

and laboratory profiles associated with outcomes, supporting our multimodal data integration 25. 

However, both Tan et al. and Thongprayoon et al. did not include patients without AKI in their 

sample. Our use of routinely collected ICU data supports prior work suggesting that early AKI 

risk can be predicted using accessible variables, enabling real-time clinical application 26. Our 

cluster-based prognostic differentiation is consistent with studies emphasizing the importance of 

AKI subtyping for guiding personalized treatment approaches 27. Overall, the findings of this 

study are congruent with—and further reinforce—the growing body of evidence supporting 

phenotype-driven stratification in critical care practice. 

The distinct clinical variables that separated the high- and low-risk AKI phenotypes in our study 

reflect pathophysiologic mechanisms driving organ dysfunction in critical illness. Sepsis, a 

dominant feature in the high-risk cluster, contributes to AKI through a combination of systemic 

inflammation, microvascular dysregulation, and mitochondrial dysfunction, leading to renal 

tubular cell stress and apoptosis 28. The use of vasopressors, particularly norepinephrine, while 

critical for maintaining perfusion, reflects the severity of shock and often exacerbates renal 

hypoperfusion and endothelial injury via excessive vasoconstriction and impaired autoregulation 
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29. Chronic kidney disease, more prevalent in our high-risk group, predisposes patients to AKI 

through maladaptive repair, capillary rarefaction, and pre-existing nephron loss, creating a 

vulnerability to sepsis and nephrotoxins 30. Heart failure compounds renal injury through 

elevated venous pressures, reduced cardiac output, and neurohormonal activation, which reduce 

glomerular filtration via altered transcapillary pressures 31. Respiratory failure and mechanical 

ventilation contribute to AKI through hypoxia, inflammation, and elevated intrathoracic 

pressures that impair renal perfusion and venous return 32. Low blood pH further disrupts cellular 

metabolism, enhances inflammation, and impairs myocardial contractility, exacerbating 

multiorgan dysfunction and correlating with higher mortality risk 33. Also, hyperphosphatemia, 

observed in the high-risk cluster, reflects cellular breakdown, impaired renal clearance, and 

systemic catabolism, all of which are markers of severe illness and poor prognosis 34. Age 

appeared inversely associated with high-risk cluster membership, suggesting that younger 

patients in our cohort were more frequently represented among those with severe acute 

physiologic disturbances. This pattern may reflect the predominance of high-intensity conditions 

such as sepsis, multiorgan failure, and vasopressor-dependent shock in younger individuals, who 

might develop more pronounced inflammatory and hemodynamic responses. Conversely, older 

patients, while burdened with chronic comorbidities, may experience less abrupt physiologic 

deterioration during ICU admission, aligning with the lower-risk phenotype 35. Together with 

higher arterial oxygenation and normal pH, these features may represent relative protective 

factors within the multidimensional context of AKI severity. Overall, these variables represent 

interrelated pathophysiological pathways connecting cardiovascular compromise, metabolic 

derangement, and inflammation, supporting the biological plausibility and clinical applicability 

of our phenotypic classification. 
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Clinical Implications 

This study presented evidence that AKI phenotypic profiling provides enhanced risk 

stratification relative to conventional serum creatinine–based staging by integrating a broader 

spectrum of patients’ clinical characteristics. We suggested that high-risk patients can be 

identified using routinely available clinical data, enabling timely risk recognition. The strong 

discriminative performance of the logistic model supports the feasibility of building real-time 

clinical decision support tools to stratify ICU patients into phenotypic clusters at admission. 

These phenotypic profiles could guide tailored interventions; for example, patients in the high-

risk cluster may benefit from closer monitoring, early nephrology consultation, and aggressive 

hemodynamic and metabolic optimization. This two-cluster approach may improve prognostic 

accuracy, facilitate communication with families, and support shared decision-making, compared 

with the conventional four-stage severity classification. Phenotype-guided research and trials 

enable the design of more targeted therapies and personalized treatment strategies in AKI 

management. 

Limitations 

This study had several limitations that warrant consideration. The analysis was based on 

retrospective data, which may introduce biases inherent to observational studies, such as 

unmeasured confounding factors. Although the clustering approach was unsupervised, selection 

bias related to missing data and variable exclusion criteria cannot be fully eliminated. 

Nevertheless, the data preprocessing ensured statistical integrity by removing highly imbalanced 

or collinear variables and applying robust imputation techniques. Race can affect the 

generalizability of research findings to other populations. However, we excluded it due to its 

high cardinality, sparse distribution, and inconsistent documentation, which could distort factor 
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projections and bias cluster centroids. Our analysis focused primarily on physiological and 

biochemical variables rather than sociodemographic determinants. Comorbidity variables with 

fewer than 10% positive cases were also excluded to prevent statistical sparsity and instability in 

the factorial analysis. Inclusion of rare features can distort covariance structures and compromise 

cluster reproducibility. The exclusion preserved statistical power, ensured meaningful variable 

contributions to multidimensional variance, and enhanced clinical interpretability of the resulting 

phenotypes. We used advanced unsupervised learning for phenotype discovery, provided equal 

representation of AKI severity stages, and internally validated both clustering and classification 

performance. While these features support the robustness and translational potential of the 

findings, external validation with an independent dataset is still needed to confirm the 

generalizability and reproducibility of the model across diverse populations and clinical settings. 

Conclusion 

This study identified two clinically and prognostically distinct phenotypic subgroups among ICU 

patients concerning AKI using a data-driven clustering approach applied to high-dimensional 

clinical data from the MIMIC-IV database. Unlike conventional AKI staging systems that rely on 

serum creatinine or urine output, our model integrated a wide range of clinical, laboratory, and 

treatment variables to identify latent patient profiles with significantly different outcomes. The 

high-risk cluster was characterized by a higher prevalence of sepsis, chronic kidney disease, 

heart failure, vasopressor use, respiratory failure, and derangements in vital signs and metabolic 

parameters, all of which were strongly predictive of mortality and severe AKI progression. Our 

logistic profiling model showed high performance in distinguishing between clusters, confirming 

the clinical validity of the phenotypic stratification. The ability to detect these phenotypes using 

routinely collected ICU data suggests that real-time clinical implementation is feasible, offering 
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opportunities to enhance early identification, personalize management strategies, and guide more 

informed communication with patients and families. These findings support a shift toward 

phenotype-based risk stratification and personalized intervention in critical care and highlight the 

translational potential of machine learning tools in improving AKI outcomes. 
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Figure legends 

Figure 1. Visualization of the patterns and percentages of missing data in the initial study dataset. 

 

 

Figure 2. The heatmap of pairwise Spearman’s correlations among study variables.  

 

 

Figure 3. A: Scatter plot of the first two principal components, with deceased patients marked in 

black. A higher frequency of deceased patients is visible on the right side of the plot, indicating 
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an association between the first component and mortality. B: Scatter plot of the first two 

principal components colored by AKI stages (0 to 3). Patients with lower AKI stages are 

represented mainly on the left, with stages 1 and 2 overlapping along the first principal 

component. C: Dendrogram from hierarchical clustering performed on the principal components, 

suggesting two distinct patient clusters. D: Scatter plot showing patient clusters derived from 

hierarchical clustering on principal components. E: Variable contributions to the clustering, 

highlighting patient features that distinguish the two clusters above the average contribution 

(indicated by the dashed red line). F: Squared cosine (Cos²) values for the variables, indicating 

the quality of variable representation. 

 

Figure 4. A: Kaplan–Meier survival curves showing 30-day survival probability for the two 

clusters. A significant difference between clusters was observed by the log-rank test, with cluster 

2 showing higher mortality. B: Receiver operating characteristic (ROC) curve illustrating the 
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performance of the logistic model in discriminating between the two clusters. The area under the 

curve (AUC) demonstrates strong model accuracy and robustness. 
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Table 1. The logistic model for cluster profiling. 

Characteristic 

Total Cluster 

1 

Cluster 

2 

Coeff. 

(SD) 

AOR (95%CI) p 

Sepsis (%) 

523 

(38.1) 

87 

(12.4) 

436 

(65.0) 

3.663 

(0.305) 

38.98 (21.42, 

70.93) 

<0.001* 

Norepinephrine (%) 

596 

(43.4) 

147 

(21.0) 

449 

(66.9) 

2.815 

(0.317) 

16.7 (8.97, 31.06) 

<0.001* 

Chronic Kidney 

Disease(%) 

336 

(24.5) 

98 

(14.0) 

238 

(35.5) 

2.694 

(0.324) 

14.79 (7.84, 27.9) 

<0.001* 

Heart Failure (%) 

443 

(32.3) 

156 

(22.3) 

287 

(42.8) 

2.573 

(0.31) 

13.11 (7.14, 24.07) 

<0.001* 

Respiratory Failure (%) 

731 

(53.3) 

246 

(35.1) 

485 

(72.3) 

1.874 

(0.255) 

6.52 (3.95, 10.74) 

<0.001* 

Epinephrine (%) 

177 

(12.9) 

55 (7.8) 

122 

(18.2) 

1.53 

(0.445) 

4.62 (1.93, 11.05) 0.001* 

Phosphorus (mg/dL) 

4.4 

(2.0) 

3.7 

(1.4) 

5.2 

(2.2) 

0.691 

(0.077) 

2.00 (1.72, 2.32) <0.001* 

Furosemide (%) 

642 

(46.8) 

275 

(39.2) 

367 

(54.7) 

0.638 

(0.286) 

1.89 (1.08, 3.31) 0.026* 

Phenylephrine (%) 

482 

(35.1) 

221 

(31.5) 

261 

(38.9) 

0.192 

(0.287) 

1.21 (0.69, 2.13) 0.505 

Respiratory Rate 

(insp/min) 

19.9 

(6.9) 

17.7 

(5.8) 

22.2 

(7.1) 

0.119 

(0.02) 

1.13 (1.08, 1.17) 

<0.001* 
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Heart Rate (bpm) 

91.7 

(21.0) 

84.6 

(17.2) 

99.2 

(22.0) 

0.069 

(0.008) 

1.07 (1.06, 1.09) 

<0.001* 

Magnesium (mg/dL) 

2.2 

(0.7) 

2.2 

(0.6) 

2.2 

(0.7) 

0.068 

(0.184) 

1.07 (0.75, 1.54) 0.712 

Arterial O2 Pressure 

(mmHg) 

179.3 

(112.6) 

220.2 

(120.5) 

136.6 

(84.9) 

-0.01 

(0.001) 

0.99 (0.99, 0.99) <0.001* 

Age (year) 

60.1 

(14.0) 

60.3 

(13.6) 

60.0 

(14.3) 

-0.022 

(0.009) 

0.98 (0.96, 1.00) 0.013* 

pH (units) 

7.3 

(0.1) 

7.4 

(0.1) 

7.3 

(0.1) 

-12.946 

(1.516) 

0.00 (0.00, 0.00) <0.001* 

*Significant at p <0.001 

SD, standard deviation; AOR, adjusted odds ratio 
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Table 2. Confusion matrix and performance metrics for the study logistic model (positive class = 

class 2) 

Confusion Matrix 

 Reference 

 Cluster 1 Cluster 2 

Prediction 

Cluster 1 642 59 

Cluster 2 59 612 

Performance Metrics 

Accuracy (95% CI) 0.914 (0.898, 0.928) 

No Information Rate 0.511 

[Accuracy > No Information Rate] p  <0.001* 

Kappa 0.8279 

Sensitivity 0.912 

Specificity 0.916 

Positive Predictive Value 0.912 

Negative Predictive Value 0.916 

Area Under the Curve 0.976 
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