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Highlights
e We identified two distinct AKI phenotypes in ICU patients using clustering analysis.
e The high-risk cluster showed significantly higher mortality and AKI severity.
e Sepsis, chronic kidney disease, and vasopressor use were key features of the high-risk
phenotype.
e Respiratory and cardiovascular failure were more prevalent in high-risk patients.

e Findings may guide personalized treatment and trial design in ICU-AKI care.

Abstract

Background and objectives: Acute kidney injury (AKI) is a frequent and heterogeneous
complication among critically ill patients in the intensive care unit (ICU), often associated with
adverse outcomes. This study aimed to identify phenotypic subtypes of ICU patients with AKI

and to evaluate their association with clinical outcomes.
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Materials and methods: A secondary analysis was conducted using the MIMIC-IV database,
including a cohort of adults with varying stages of AKI, as well as patients without AKI.
Factorial analysis of mixed data, followed by hierarchical clustering, was used to identify patient
phenotypes based on a wide range of clinical, demographic, laboratory, and treatment variables.
Cluster profiling was conducted using a multivariable logistic regression model.

Results: Among 1,372 patients evenly distributed across stages 0 (non-AKI) to 3 (n=343 per
stage), two distinct clusters were identified. Cluster 2 (n =671) had significantly higher in-
hospital mortality (54.7% vs. 21.9%, p<0.001), and a greater prevalence of higher AKI stages
(p<0.001). Moreover, cluster 2 showed a significantly greater frequency of sepsis, vasopressors
and diuretics administration, chronic kidney disease, heart failure, and also higher respiratory
and heart rate, and phosphorus. Patients in cluster 2 were a little younger and had a lower arterial
O2 pressure and blood pH. A logistic regression profiling model achieved an accuracy (95% CI)
of 91.4%(89.8%, 92.8%) in predicting cluster assignment.

Conclusions: There are two clinically distinct phenotypes in patients admitted to the ICU
concerning AKI with strong prognostic implications. The findings highlight the potential of
routine ICU data to enable phenotype-based risk stratification in AKI.

Keywords: Acute Kidney Injury; Intensive Care Unit; Sepsis; Clustering; Phenotype; Risk

Stratification

Introduction

Acute Kidney Injury (AKI) is a critical condition characterized by a sudden decline in renal
function, frequently observed in the intensive care unit (ICU). It is associated with significant

morbidity and mortality, with estimated incidence rates ranging from 15% to 40% in critically ill
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populations !. Sepsis, cardiovascular instability, nephrotoxic drugs, and mechanical ventilation
are major risk factors contributing to AKI development 2. AKI is associated with adverse
outcomes, including prolonged ICU stays, increased need for renal replacement therapy, and
high mortality rates >. Predicting AKI onset and progression remains a major clinical challenge,
as current risk stratification models do not fully capture the complex nature of the illness *. Early
detection of AKI is also essential to improve patient outcomes through targeted therapies °.
Machine learning-based predictive models offer a promising solution by identifying high-risk
patients, allowing for personalized risk stratification and clinical decision-making °.

Clustering techniques provide a powerful approach to identifying subgroups of patients with
similar clinical characteristics 7. These methods have been used to stratify patients in ICU
settings, improving diagnosis, resource allocation, and treatment strategies °. In the context of
AKI, clustering algorithms can uncover distinct risk profiles among ICU patients, facilitating
early detection and individualized intervention °. Current models for AKI severity in the ICU
remain limited in their ability to comprehensively stratify patient risk due to relying on a limited
number of markers, such as serum creatinine and urine output '%!!. There is a growing need for
models that integrate diverse patient data to improve early risk assessment ', Heterogeneous,
high-dimensional ICU data, which often include missing values and noise, complicate the
identification of meaningful patient subgroups '*!4. Meanwhile, advanced machine learning
approaches have shown promise in predicting AKI but require further refinement to enhance
transparency and integration into clinical workflows '°. The development of robust interpretable
clustering models could enable more precise risk stratification of AKI %17,

The aim of conducting this study was to develop a clustering model that identifies distinct

subgroups of ICU patients based on their risk of developing AKI. By incorporating
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comprehensive patient data, including demographics, vital signs, laboratory results, and
comorbidities, we sought to identify phenotypic subtypes associated with AKI. The integration
of clustering models into clinical workflows has the potential to improve risk stratification,
optimize ICU resource allocation, and facilitate early detection and personalized treatment
strategies !7'%. We hypothesized that comprehensive patient data would help to identify

prognostic clusters of patients concerning AKI.

Methods

Population
This study is a secondary analysis of cross-sectional data derived from a large, intensive care

cohort. We used the Medical Information Mart for Intensive Care IV (MIMIC-1V, version 3.1)
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database, a publicly accessible critical care dataset developed by the Massachusetts Institute of
Technology Laboratory for Computational Physiology in collaboration with the Beth Israel
Deaconess Medical Center in Boston, Massachusetts (https://mimic.mit.edu) 19 MIMIC-TV
provides de-identified, high-resolution clinical data for patients admitted to intensive care units
between 2008 and 2022, and reflects real-world ICU practice within a tertiary care setting. The
database includes comprehensive records, comprising patient demographics, vital signs,
laboratory measurements, comorbidities, administered therapies, and outcome data. For this
analysis, we selected a cohort of adult patients (>18 years) who experienced their first ICU
admission, with a minimum ICU stay of 48 hours, between 2017 and 2022. This temporal
window was selected to ensure consistency with updated diagnostic and therapeutic practices.
Candidate Variables

The analytical dataset included baseline demographic variables, pre-existing comorbid
conditions, and organ system dysfunction through a broad spectrum of laboratory measurements
and physiologic markers representative of cardiovascular, respiratory, renal, hepatic, and
hematologic function. Additionally, Data on medication exposure—specifically the
administration of vasoactive agents and diuretics—were incorporated to reflect treatment
intentions and hemodynamic support. The predictor variables were extracted from the first 24
hours following ICU admission to represent the baseline clinical values. Due to missing and
inconsistent urine output documentation across patient records, the urine output criteria for AKI
classification as defined by guidelines were not applied . Consequently, AKI stage was
determined based on serum creatinine (Cr) measurements 2°. Stage 0 (No AKI) included those
with no Cr increase meeting AKI criteria and no AKI-related international classification of

diseases (ICD) diagnostic codes. This dual criterion was applied to minimize misclassification
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and ensure a true non-AKI reference group. Patients with an AKI ICD code but no creatinine rise
were excluded from stage 0. Stage 1 was defined by an increase in Cr to 1.5—1.9 times the
baseline or an absolute rise of >0.3 mg/dL within 48 hours. Stage 2 involved an increase in Cr to
2.0-2.9 times the baseline, while Stage 3 was characterized by an increase in Cr to >3.0 times
baseline or an absolute Cr of >4.0 mg/dL. Baseline serum creatinine was defined as the first
available measurement at ICU admission. Pre-existing chronic kidney disease was identified
based on ICD diagnostic codes. To enhance cohort validity and decrease bias introduced by
incomplete data, only patients with less than 25% missing data across study variables were
included. No additional patients were excluded from analysis. This strategy ensured data
robustness while preserving clinical heterogeneity. The final analytical sample included patients
across all four AKI severity strata (Stages 0-3). To ensure balanced representation and facilitate
unbiased phenotypic discovery across the full spectrum of AKI severity (total N = 2281), we
used an equal sampling strategy by selecting an identical number of patients from each AKI
stage subgroup (AKI stages 0-3) for clustering analysis. Given that the smallest subgroup, AKI
stage 2, comprised 343 patients, we randomly selected 343 patients from each AKI stage,
resulting in a total analytical cohort of 1,372 patients.

Data Availability

The raw, de-identified data used in this study are publicly accessible through the Medical
Information Mart for Intensive Care IV (MIMIC-1V) database, available at
https://mimic.mit.edu‘9. MIMIC-IV is an open-access, relational database constructed from the
electronic health records of patients admitted to the Beth Israel Deaconess Medical Center in

Boston, Massachusetts. Access to the MIMIC-IV database requires completion of appropriate
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training and approval under a data use agreement to ensure responsible and ethical utilization of
sensitive health information.

Ethical Considerations

This study was conducted using data from the publicly available MIMIC-1V database, which is
fully anonymized and did not involve direct interaction with human subjects, the collection of
personal information, or any procedures requiring informed consent. The analysis was performed
following ethical standards governing the use of publicly available clinical data. The use of the
MIMIC-1IV database requires completion of ethics training, ensuring responsible handling of
sensitive health information. No raw data were republished or redistributed in this study, and all
reported findings are based solely on aggregated analyses of the data. Our study followed the
ethical guidelines specified in the Declaration of Helsinki and received ethics approval from the
institutional review board of our university with the reference number of
IR.SBMU.RETECH.REC.1403.896. In order to acquire access to data, we successfully
completed the CITI “Data or Specimens Only Research” course (record ID: 53106331) and
signed PhysioNet credentialed health data use agreement 1.5.0 on March 17, 2025.

Data Analyses

The initial phase of analysis involved rigorous data preprocessing to ensure completeness and
reliability. Variables showing large missingness (>20%), high cardinality, or severe binary
imbalance (<10% prevalence) were excluded. Redundant features with strong collinearity
(Spearman p >0.5) were filtered to decrease the risk of multicollinearity. This moderate threshold
was chosen to prevent collinearity-driven distortions in distance-based clustering and to promote
model parsimony suitable for clinical translation. Missing data were imputed using predictive

mean matching to preserve distributional properties. Factorial analysis of mixed data was used to
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project high-dimensional clinical data into lower-dimensional principal components.
Hierarchical clustering on principal components was applied to the transformed data to identify
latent patient subgroups. The number of clusters was suggested by the dendrogram and supported
further by average silhouette width, which quantifies intra-cluster cohesion and inter-cluster
separation. The clustering validity was further supported by the cophenetic correlation
coefficient, which measured the efficacy of the dendrogram. Variable contributions and squared
cosine (Cos?) metrics were used to identify the most informative features. Cluster differentiation
was statistically validated through chi-squared tests comparing AKI stage and mortality
distributions. Survival characteristics across clusters were analyzed using Kaplan—Meier survival
curves with log-rank testing. To further characterize cluster-defining features, a logistic
regression model was trained using high-importance variables identified from the clustering
phase. Hyperparameter tuning for model regularization (alpha and lambda) was performed via
10-fold cross-validation. Classification performance with 10-fold cross-validation was evaluated
using the area under the ROC curve (AUC), sensitivity, specificity, accuracy, kappa statistic, and
positive/negative predictive values. A confusion matrix was used to assess classification

agreement.

Results

Sample
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The sample included 1,372 patients with AKI severity evenly distributed across stages 0 to 3 (n =
343 per stage). The median follow-up time was 5.5 days with an interquartile range of 3.1 to 11.9
days. There were no duplicate rows in the study dataset. Figure 1 illustrates the initial variables
and the patterns of missing data. In total, 11.4% of the initial data were missing. We then
excluded variables with >20% missing data from further analysis: cardiac output, C-reactive
protein, direct bilirubin, central venous pressure, arterial O: saturation, serum albumin, and
marital status. Furthermore, the variable race was excluded due to its high cardinality (30 levels).
Binary features were also evaluated for imbalance, and those with fewer than 10% positive cases
were excluded from the analysis. Specifically, among comorbidities, liver disease (3.7%
positive), type 1 diabetes mellitus (2.2%), cerebrovascular disease (1.2%), and acute myocardial
infarction (0.4%) were excluded. Similarly, medication use variables of dobutamine (4.6%),
milrinone (3.1%), dopamine (1.5%), and bumetanide (1.3%) were also excluded due to low
prevalence. Figure 2 illustrates the heatmap of correlations among the study variables using
Spearman's correlation coefficients. There were large and statistically significant correlation
between ALT and AST (p = 0.86), serum chloride and sodium (p = 0.63), norepinephrine and
vasopressin (p = 0.61), systolic and diastolic blood pressure (p = 0.57), prothrombin time and
total bilirubin (p = 0.55), arterial CO2 pressure and PH (p =—0.51), all p <0.01. To reduce
redundancy and decrease the risk of multicollinearity, we excluded one variable from each pair
of the correlated features. Specifically, we excluded AST, serum chloride, vasopressin, diastolic
blood pressure, total bilirubin, and arterial CO: pressure. These selections were based on clinical
relevance, physiological specificity, and the goal of retaining the variable that provides broader
or more direct insight into patient status. The remaining data contained only 3.8% missing

values, which were imputed using predictive mean matching.
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Clustering

Figure 3A presents a scatter plot of the first and second principal components, with deceased
patients indicated in black. A greater concentration of deceased patients is observed on the right
side of the plot, suggesting an association between the first component and mortality. Similarly,
Figure 3B displays the same scatter plot colored according to AKI stages (0 to 3). Patients with
lower AKI stages are predominantly located on the left side of the plot. Stages 1 and 2 show
substantial overlap, particularly along the first principal component. Hierarchical clustering on
principal components best suggested the presence of two clusters (Figure 3C). The average
silhouette width was 0.56, indicating moderately well-separated clusters. The cophenetic
correlation coefficient was 0.59, suggesting that the hierarchical clustering dendrogram
reasonably preserved the original distance structure. Figure 3D presents a scatter plot illustrating
the results of the hierarchical clustering. Figures 3E and 3F illustrate the variable contributions
and the squared cosine (Cos?) values of the variables, respectively, indicating that the clusters
can be effectively distinguished using a subset of patient features. The clear separation between
the two cluster centroids, together with the distribution of clinical severity along the first
principal component, indicates that the clustering scheme may hold prognostic significance.
Cluster 1 included 701 patients, and cluster 2 included 671 patients. Cluster 1 included 314
(44.8%), 159 (22.7%), 148 (21.1%), and 80 (11.4%) patients with AKI stages 0, 1, 2, and 3,
respectively, while cluster 2 included 29 (4.3%), 184 (27.4%), 195 (29.1%), and 263 (39.2%)
patients across the same stages. There was a significant difference in the distribution of AKI
severity between the clusters, ¥*(3) = 342.210, p < 0.001. There was also a statistically
significant difference in mortality rates between clusters 1 (145 deaths; 21.9%) and 2 (367

deaths; 54.7%), x*(1) = 154.500, p < 0.001, odds ratio (95% CI) = 4.28 (3.39, 5.42). Overall,
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cluster 2 was a high-risk subgroup of patients with greater AKI severity and higher mortality,
signifying a poorer prognosis compared with cluster 1. Figure 4A demonstrates a significant
difference in 30-day survival probability between the two clusters, as confirmed by the log-rank
test.

Cluster Profiling

We developed a logistic regression model to evaluate the discriminative ability of the two
clusters using the features identified as important in the cluster analysis. Hyperparameter tuning
via 10-fold cross-validation identified the optimal logistic regression model parameters with an
alpha of 0.100 and a lambda of 0.044. Table 1 presents the logistic regression model showing
variables that differentiate the two clusters and identify a distinct high-risk phenotype. Variables
related to critical illness severity—such as sepsis, vasopressor use, chronic comorbidities (e.g.,
chronic kidney disease and heart failure), and markers of organ dysfunction—were strongly
associated with membership in the high-risk cluster. The regression coefficients and odds ratios
indicate that these features are powerful predictors of cluster assignment. Additionally, elevated
respiratory and heart rates were statistically significant, further supporting the physiological
distinctiveness of this group. In contrast, higher arterial oxygen levels, normal pH, and older age
were negatively associated with high-risk cluster membership. These statistical patterns may help
clinicians identify ICU patients with phenotypic features compatible with more severe AKI
trajectories. Model performance was evaluated using 10-fold cross-validation. Figure 4B
presents the model's performance, as measured by the area under the ROC curve (AUC). The
large AUC demonstrated the model’s strong performance in distinguishing the two clusters,
thereby validating the effectiveness of the clustering scheme. Table 2 summarizes the diagnostic

performance of the model in identifying the positive class (class 2) among the clustered patients.
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The logistic model demonstrated strong and balanced classification performance, effectively
distinguishing between the two clusters with high concordance between predicted and actual
labels. The diagnostic accuracy indicates minimal systematic bias in misclassification. Overall,

these results support the model’s reliability and robustness in identifying the two patient profiles.

Discussion
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This study aimed to identify phenotypes of ICU patients concerning AKI through a data-driven
clustering framework, hypothesizing that multidimensional patient profiles could identify
prognostically meaningful subgroups beyond conventional AKI staging. The findings confirmed
the presence of distinct clinical clusters associated with varying degrees of physiologic
derangement and outcome risk. By incorporating a wide range of clinical, laboratory, and
therapeutic variables, the clustering model captured heterogeneity that is not reflected in serum
creatinine-based staging systems. The unsupervised learning strategy revealed a high-risk cluster
characterized by systemic inflammation, cardiovascular compromise, and multi-organ
dysfunction. The logistic profiling model demonstrated that features such as sepsis, chronic
kidney disease, heart failure, respiratory failure, and vasopressor use—particularly
norepinephrine and epinephrine—were strongly associated with this high-risk cluster.
Additionally, elevated serum phosphorus, increased respiratory and heart rates, and loop diuretic
administration further contributed to the cluster differentiation, suggesting a convergence of
hemodynamic instability and therapeutic intensity. In contrast, parameters such as higher arterial
oxygenation and a higher blood pH appeared inversely associated with the high-risk phenotype,
reinforcing the multidimensional nature of critical illness severity. This methodology enabled
precise identification of vulnerable ICU populations and provided a foundation for future
phenotype-targeted strategies in critical care settings.

Recent studies have supported the application of unsupervised machine learning in identifying
phenotypically distinct subtypes among ICU patients with AKI. A study on dialysis-requiring
AKI showed that phenotypes characterized by systemic inflammation, hemodynamic instability,
and organ dysfunction correlate with significantly worse outcomes 2!. Deep learning-based

models have also suggested clinically meaningful AKI subgroups with differential mortality
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risks, highlighting the limitations of serum creatinine-based staging alone 2. Tan et al. found
AKI phenotypes with variable trajectories and clinical patterns, which could not be captured
using KDIGO criteria alone 2. Meanwhile, compared with the seven subgroups identified by
Tan et al., our identification of a smaller number of clinically distinct clusters enhances practical
applicability by facilitating straightforward risk stratification and bedside implementation. Smith
et al. suggested that AKI is a multifactorial syndrome best understood via longitudinal and
multivariate modeling rather than conventional creatinine thresholds 2. Thongprayoon et al. also
used clustering in an AKI population and found distinct clusters with divergent comorbidities
and laboratory profiles associated with outcomes, supporting our multimodal data integration .
However, both Tan et al. and Thongprayoon et al. did not include patients without AKI in their
sample. Our use of routinely collected ICU data supports prior work suggesting that early AKI
risk can be predicted using accessible variables, enabling real-time clinical application 2°. Our
cluster-based prognostic differentiation is consistent with studies emphasizing the importance of
AKI subtyping for guiding personalized treatment approaches . Overall, the findings of this
study are congruent with—and further reinforce—the growing body of evidence supporting
phenotype-driven stratification in critical care practice.

The distinct clinical variables that separated the high- and low-risk AKI phenotypes in our study
reflect pathophysiologic mechanisms driving organ dysfunction in critical illness. Sepsis, a
dominant feature in the high-risk cluster, contributes to AKI through a combination of systemic
inflammation, microvascular dysregulation, and mitochondrial dysfunction, leading to renal
tubular cell stress and apoptosis 2%. The use of vasopressors, particularly norepinephrine, while
critical for maintaining perfusion, reflects the severity of shock and often exacerbates renal

hypoperfusion and endothelial injury via excessive vasoconstriction and impaired autoregulation
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2 Chronic kidney disease, more prevalent in our high-risk group, predisposes patients to AKI
through maladaptive repair, capillary rarefaction, and pre-existing nephron loss, creating a
vulnerability to sepsis and nephrotoxins **. Heart failure compounds renal injury through
elevated venous pressures, reduced cardiac output, and neurohormonal activation, which reduce
glomerular filtration via altered transcapillary pressures >'. Respiratory failure and mechanical
ventilation contribute to AKI through hypoxia, inflammation, and elevated intrathoracic
pressures that impair renal perfusion and venous return *2. Low blood pH further disrupts cellular
metabolism, enhances inflammation, and impairs myocardial contractility, exacerbating
multiorgan dysfunction and correlating with higher mortality risk **. Also, hyperphosphatemia,
observed in the high-risk cluster, reflects cellular breakdown, impaired renal clearance, and
systemic catabolism, all of which are markers of severe illness and poor prognosis **. Age
appeared inversely associated with high-risk cluster membership, suggesting that younger
patients in our cohort were more frequently represented among those with severe acute
physiologic disturbances. This pattern may reflect the predominance of high-intensity conditions
such as sepsis, multiorgan failure, and vasopressor-dependent shock in younger individuals, who
might develop more pronounced inflammatory and hemodynamic responses. Conversely, older
patients, while burdened with chronic comorbidities, may experience less abrupt physiologic
deterioration during ICU admission, aligning with the lower-risk phenotype *°. Together with
higher arterial oxygenation and normal pH, these features may represent relative protective
factors within the multidimensional context of AKI severity. Overall, these variables represent
interrelated pathophysiological pathways connecting cardiovascular compromise, metabolic
derangement, and inflammation, supporting the biological plausibility and clinical applicability

of our phenotypic classification.
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Clinical Implications

This study presented evidence that AKI phenotypic profiling provides enhanced risk
stratification relative to conventional serum creatinine—based staging by integrating a broader
spectrum of patients’ clinical characteristics. We suggested that high-risk patients can be
identified using routinely available clinical data, enabling timely risk recognition. The strong
discriminative performance of the logistic model supports the feasibility of building real-time
clinical decision support tools to stratify ICU patients into phenotypic clusters at admission.
These phenotypic profiles could guide tailored interventions; for example, patients in the high-
risk cluster may benefit from closer monitoring, early nephrology consultation, and aggressive
hemodynamic and metabolic optimization. This two-cluster approach may improve prognostic
accuracy, facilitate communication with families, and support shared decision-making, compared
with the conventional four-stage severity classification. Phenotype-guided research and trials
enable the design of more targeted therapies and personalized treatment strategies in AKI
management.

Limitations

This study had several limitations that warrant consideration. The analysis was based on
retrospective data, which may introduce biases inherent to observational studies, such as
unmeasured confounding factors. Although the clustering approach was unsupervised, selection
bias related to missing data and variable exclusion criteria cannot be fully eliminated.
Nevertheless, the data preprocessing ensured statistical integrity by removing highly imbalanced
or collinear variables and applying robust imputation techniques. Race can affect the
generalizability of research findings to other populations. However, we excluded it due to its

high cardinality, sparse distribution, and inconsistent documentation, which could distort factor
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projections and bias cluster centroids. Our analysis focused primarily on physiological and
biochemical variables rather than sociodemographic determinants. Comorbidity variables with
fewer than 10% positive cases were also excluded to prevent statistical sparsity and instability in
the factorial analysis. Inclusion of rare features can distort covariance structures and compromise
cluster reproducibility. The exclusion preserved statistical power, ensured meaningful variable
contributions to multidimensional variance, and enhanced clinical interpretability of the resulting
phenotypes. We used advanced unsupervised learning for phenotype discovery, provided equal
representation of AKI severity stages, and internally validated both clustering and classification
performance. While these features support the robustness and translational potential of the
findings, external validation with an independent dataset is still needed to confirm the

generalizability and reproducibility of the model across diverse populations and clinical settings.

Conclusion

This study identified two clinically and prognostically distinct phenotypic subgroups among ICU
patients concerning AKI using a data-driven clustering approach applied to high-dimensional
clinical data from the MIMIC-IV database. Unlike conventional AKI staging systems that rely on
serum creatinine or urine output, our model integrated a wide range of clinical, laboratory, and
treatment variables to identify latent patient profiles with significantly different outcomes. The
high-risk cluster was characterized by a higher prevalence of sepsis, chronic kidney disease,
heart failure, vasopressor use, respiratory failure, and derangements in vital signs and metabolic
parameters, all of which were strongly predictive of mortality and severe AKI progression. Our
logistic profiling model showed high performance in distinguishing between clusters, confirming
the clinical validity of the phenotypic stratification. The ability to detect these phenotypes using

routinely collected ICU data suggests that real-time clinical implementation is feasible, offering
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opportunities to enhance early identification, personalize management strategies, and guide more
informed communication with patients and families. These findings support a shift toward
phenotype-based risk stratification and personalized intervention in critical care and highlight the

translational potential of machine learning tools in improving AKI outcomes.
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Figure 1. Visualization of the patterns and percentages of missing data in the initial study dataset.

Figure legends
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an association between the first component and mortality. B: Scatter plot of the first two
principal components colored by AKI stages (0 to 3). Patients with lower AKI stages are
represented mainly on the left, with stages 1 and 2 overlapping along the first principal
component. C: Dendrogram from hierarchical clustering performed on the principal components,
suggesting two distinct patient clusters. D: Scatter plot showing patient clusters derived from
hierarchical clustering on principal components. E: Variable contributions to the clustering,
highlighting patient features that distinguish the two clusters above the average contribution
(indicated by the dashed red line). F: Squared cosine (Cos?) values for the variables, indicating

the quality of variable representation.
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Figure 4. A: Kaplan—Meier survival curves showing 30-day survival probability for the two
clusters. A significant difference between clusters was observed by the log-rank test, with cluster

2 showing higher mortality. B: Receiver operating characteristic (ROC) curve illustrating the
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performance of the logistic model in discriminating between the two clusters. The area under the

curve (AUC) demonstrates strong model accuracy and robustness.
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Table 1. The logistic model for cluster profiling.

Total |Cluster |Cluster| Coeff.
Characteristic AOR (95%CI) p
1 2 (SD)
523 87 436 3.663 38.98 (21.42,
Sepsis (%) <0.001*
(38.1) | (12.4) | (65.0) | (0.305) 70.93)
596 147 449 2.815 <0.001°%*
Norepinephrine (%) 16.7 (8.97, 31.06)
(43.4) | (21.0) | (66.9) | (0.317)
Chronic Kidney 336 98 238 2.694 <0.001%*
14.79 (7.84, 27.9)
Disease(%) (24.5) | (14.0) | (35.5) | (0.324)
443 156 287 2.573 <0.001°%*
Heart Failure (%) 13.11 (7.14, 24.07)
(32.3) | (22.3) | (42.8) | (0.31)
731 246 485 1.874 <0.001%*
Respiratory Failure (%) 6.52 (3.95, 10.74)
(53.3) | (35.1) | (72.3) | (0.255)
177 122 1.53
Epinephrine (%) 55 (7.8) 4.62(1.93,11.05) | 0.001*
(12.9) (18.2) | (0.445)
4.4 3.7 5.2 0.691
Phosphorus (mg/dL) 2.00 (1.72,2.32) | <0.001%*
2.0 | (1.4) | 2.2) | (0.077)
642 275 367 0.638
Furosemide (%) 1.89 (1.08, 3.31) | 0.026*
(46.8) | (39.2) | (54.7) | (0.286)
482 221 261 0.192
Phenylephrine (%) 1.21 (0.69, 2.13) | 0.505
(35.1) | (31.5) | (38.9) | (0.287)
Respiratory Rate 199 | 17.7 | 222 0.119 <0.001*
1.13(1.08, 1.17)
(insp/min) (6.9) | (5.8) | (7.1) (0.02)
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91.7 | 84.6 | 99.2 0.069 <0.001*
Heart Rate (bpm) 1.07 (1.06, 1.09)
(21.0) | (17.2) | (22.0) | (0.008)
2.2 2.2 2.2 0.068
Magnesium (mg/dL) 1.07 (0.75, 1.54) 0.712
(0.7) | (0.6) | (0.7) | (0.184)
Arterial O2 Pressure 179.3 | 220.2 | 136.6 -0.01
0.99 (0.99, 0.99) | <0.001*
(mmHg) (112.6)[(120.5)| (84.9) | (0.001)
60.1 60.3 | 60.0 -0.022
Age (year) 0.98 (0.96, 1.00) | 0.013*
(14.0) | (13.6) | (14.3) | (0.009)
7.3 7.4 7.3 -12.946
pH (units) 0.00 (0.00, 0.00) | <0.001%*
(0.1) | (0.1) | (0.1) | (1.516)

*Significant at p <0.001

SD, standard deviation; AOR, adjusted odds ratio
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Table 2. Confusion matrix and performance metrics for the study logistic model (positive class =

class 2)
Confusion Matrix
Reference
Cluster 1 Cluster 2
Cluster 1 | 642 59
Prediction
Cluster 2 | 59 612
Performance Metrics
Accuracy (95% CI) 0.914 (0.898, 0.928)
No Information Rate 0.511
[Accuracy > No Information Rate] p <0.001%*
Kappa 0.8279
Sensitivity 0.912
Specificity 0.916
Positive Predictive Value 0.912
Negative Predictive Value 0.916
Area Under the Curve 0.976
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