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ARTICLE INFO ABSTRACT

Keywords: Background and objectives: Acute kidney injury (AKI) is a frequent and heterogeneous complication among
Acute kidney injury critically ill patients in the intensive care unit (ICU), often associated with adverse outcomes. This study aimed
Imer?swe care unit to identify phenotypic subtypes of ICU patients with AKI and to evaluate their association with clinical
(S:TESSZring outcomes.

Phenotype Materials and methods: A secondary analysis was conducted using the MIMIC-IV database, including a cohort

of adults with varying stages of AKI, as well as patients without AKI. Factorial analysis of mixed data, followed
by hierarchical clustering, was used to identify patient phenotypes based on a wide range of clinical,
demographic, laboratory, and treatment variables. Cluster profiling was conducted using a multivariable
logistic regression model.

Results: Among 1372 patients evenly distributed across stages 0 (non-AKI) to 3 (n = 343 per stage), two
distinct clusters were identified. Cluster 2 (n = 671) had significantly higher in-hospital mortality (54.7% vs.
21.9%, p < 0.001), and a greater prevalence of higher AKI stages (p < 0.001). Moreover, cluster 2 showed a
significantly greater frequency of sepsis, vasopressors and diuretics administration, chronic kidney disease,
heart failure, and also higher respiratory and heart rate, and phosphorus. Patients in cluster 2 were a little
younger and had a lower arterial O, pressure and blood pH. A logistic regression profiling model achieved an
accuracy (95% CI) of 91.4% (89.8%, 92.8%) in predicting cluster assignment.

Conclusions: There are two clinically distinct phenotypes in patients admitted to the ICU concerning AKI with
strong prognostic implications. The findings highlight the potential of routine ICU data to enable phenotype-
based risk stratification in AKI.

Risk stratification

RESUMEN
Palabras clave: Antecedentes y objetivos: La insuficiencia renal aguda (IRA) es una complicacion frecuente y heterogénea entre
Lesi6n renal aguda los pacientes criticos ingresados en la Unidad de Cuidados Intensivos (UCI), a menudo asociada a resultados
Unidad de Cuidados Intensivos adversos. El objetivo de este estudio fue identificar los subtipos fenotipicos de los pacientes de la UCI con IRA 'y
Sepsis evaluar su asociacion con los resultados clinicos.
Agrupacion

* Corresponding author.
E-mail address: sanazzargar@ajaums.ac.ir (S. Zargar Balaye Jame).

https://doi.org/10.1016/j.nefro.2025.501469

Received 20 August 2025; Accepted 24 November 2025

Available online xxx

0211-6995/© 2025 Sociedad Espailola de Nefrologia. Published by Elsevier Espana, S.L.U. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article in press as: M. Fathi, N. Markazi Moghaddam, H. Markazi Moghadam, et al., Data-driven phenotypes across the full AKI severity
spectrum in patients admitted to the ICU, Nefrologia, https://doi.org/10.1016/j.nefro.2025.501469



https://doi.org/10.1016/j.nefro.2025.501469
http://www.revistanefrologia.com
https://orcid.org/0000-0001-8393-7314
https://doi.org/10.1016/j.nefro.2025.501469
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sanazzargar@ajaums.ac.ir
https://doi.org/10.1016/j.nefro.2025.501469

NEFRO-501469; No. of Pages 9

M. Fathi, N. Markazi Moghaddam, H. Markazi Moghadam et al.

Fenotipo
Estratificacion del riesgo

Nefrologia xx (2025) 501469

Materiales y métodos: Se realizé un anélisis secundario utilizando la base de datos MIMIC-1V, que incluye una
cohorte de adultos con diferentes estadios de LRA, asi como pacientes sin LRA. Se utilizé un anélisis factorial
de datos mixtos, seguido de un agrupamiento jerarquico, para identificar los fenotipos de los pacientes
basadndose en una amplia gama de variables clinicas, demogréficas, de laboratorio y de tratamiento. El perfil
de los grupos se realizé utilizando un modelo de regresion logistica multivariable.

Resultados: Entre los 1.372 pacientes distribuidos uniformemente entre los estadios 0 (sin LRA) y 3 (n =
343 por estadio), se identificaron dos grupos distintos. El grupo 2 (n = 671) presenté una mortalidad
hospitalaria significativamente mayor (54,7% frente a 21,9%, p < 0,001) y una mayor prevalencia de estadios
mas avanzados de IRA (p < 0,001). Ademas, el grupo 2 mostré una frecuencia significativamente mayor de
sepsis, administracion de vasopresores y diuréticos, enfermedad renal crénica, insuficiencia cardiaca y
también una frecuencia respiratoria y cardiaca mas alta, y fésforo. Los pacientes del grupo 2 eran un poco mas
jovenes y tenian una presion arterial de O, y un pH sanguineo més bajos. Un modelo de perfil de regresion
logistica alcanzo una precision (IC del 95%) del 91,4% (89,8%, 92,8%) en la prediccion de la asignacion de
clisteres.

Conclusiones: Existen dos fenotipos clinicamente distintos en los pacientes ingresados en la UCI en relacion
con la LRA, con fuertes implicaciones prondsticas. Los resultados ponen de relieve el potencial de los datos

rutinarios de la UCI para permitir la estratificacién del riesgo basada en el fenotipo en la LRA.

Introduction

Acute kidney injury (AKI) is a critical condition characterized by a
sudden decline in renal function, frequently observed in the intensive
care unit (ICU). It is associated with significant morbidity and
mortality, with estimated incidence rates ranging from 15% to 40% in
critically ill populations.’ Sepsis, cardiovascular instability, nephro-
toxic drugs, and mechanical ventilation are major risk factors
contributing to AKI development.? AKI is associated with adverse
outcomes, including prolonged ICU stays, increased need for renal
replacement therapy, and high mortality rates. Predicting AKI onset
and progression remains a major clinical challenge, as current risk
stratification models do not fully capture the complex nature of the
illness.* Early detection of AKI is also essential to improve patient
outcomes through targeted therapies.” Machine learning-based
predictive models offer a promising solution by identifying high-risk
patients, allowing for personalized risk stratification and clinical
decision-making.®

Clustering techniques provide a powerful approach to identifying
subgroups of patients with similar clinical characteristics.” These
methods have been used to stratify patients in ICU settings, improving
diagnosis, resource allocation, and treatment strategies.® In the
context of AKI, clustering algorithms can uncover distinct risk profiles
among ICU patients, facilitating early detection and individualized
intervention.’ Current models for AKI severity in the ICU remain
limited in their ability to comprehensively stratify patient risk due to
relying on a limited number of markers, such as serum creatinine and
urine output.’®!! There is a growing need for models that integrate
diverse patient data to improve early risk assessment.'? Heteroge-
neous, high-dimensional ICU data, which often include missing values
and noise, complicate the identification of meaningful patient
subgroups.'*'* Meanwhile, advanced machine learning approaches
have shown promise in predicting AKI but require further refinement
to enhance transparency and integration into clinical workflows.'®
The development of robust interpretable clustering models could
enable more precise risk stratification of AKI'®'”

The aim of conducting this study was to develop a clustering
model that identifies distinct subgroups of ICU patients based on
their risk of developing AKI. By incorporating comprehensive
patient data, including demographics, vital signs, laboratory results,
and comorbidities, we sought to identify phenotypic subtypes
associated with AKI. The integration of clustering models into
clinical workflows has the potential to improve risk stratification,
optimize ICU resource allocation, and facilitate early detection and
personalized treatment strategies.'”'® We hypothesized that
comprehensive patient data would help to identify prognostic
clusters of patients concerning AKI.

Methods
Population

This study is a secondary analysis of cross-sectional data derived
from a large, intensive care cohort. We used the Medical Information
Mart for Intensive Care IV (MIMIC-IV, version 3.1) database, a
publicly accessible critical care dataset developed by the Massachu-
setts Institute of Technology Laboratory for Computational Physiolo-
gy in collaboration with the Beth Israel Deaconess Medical Center in
Boston, Massachusetts (https://mimic.mit.edu).'® MIMIG-IV provides
de-identified, high-resolution clinical data for patients admitted to
intensive care units between 2008 and 2022, and reflects real-world
ICU practice within a tertiary care setting. The database includes
comprehensive records, comprising patient demographics, vital signs,
laboratory measurements, comorbidities, administered therapies, and
outcome data. For this analysis, we selected a cohort of adult patients
(>18 years) who experienced their first ICU admission, with a
minimum ICU stay of 48 h, between 2017 and 2022. This temporal
window was selected to ensure consistency with updated diagnostic
and therapeutic practices.

Candidate variables

The analytical dataset included baseline demographic variables,
pre-existing comorbid conditions, and organ system dysfunction
through a broad spectrum of laboratory measurements and physio-
logic markers representative of cardiovascular, respiratory, renal,
hepatic, and hematologic function. Additionally, data on medication
exposure — specifically the administration of vasoactive agents and
diuretics — were incorporated to reflect treatment intentions and
hemodynamic support. The predictor variables were extracted from
the first 24 h following ICU admission to represent the baseline
clinical values. Due to missing and inconsistent urine output
documentation across patient records, the urine output criteria for
AKI classification as defined by guidelines were not applied.>’
Consequently, AKI stage was determined based on serum creatinine
(Cr) measurements.?? Stage 0 (no AKI) included those with no Cr
increase meeting AKI criteria and no AKl-related international
classification of diseases (ICD) diagnostic codes. This dual criterion
was applied to minimize misclassification and ensure a true non-AKI
reference group. Patients with an AKI ICD code but no creatinine rise
were excluded from Stage 0. Stage 1 was defined by an increase in Cr
to 1.5-1.9 times the baseline or an absolute rise of >0.3 mg/dL within
48 h. Stage 2 involved an increase in Cr to 2.0-2.9 times the baseline,
while Stage 3 was characterized by an increase in Cr to >3.0 times
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baseline or an absolute Cr of >4.0 mg/dL. Baseline serum creatinine
was defined as the first available measurement at ICU admission. Pre-
existing chronic kidney disease was identified based on ICD diagnostic
codes. To enhance cohort validity and decrease bias introduced by
incomplete data, only patients with less than 25% missing data across
study variables were included. No additional patients were excluded
from analysis. This strategy ensured data robustness while preserving
clinical heterogeneity. The final analytical sample included patients
across all four AKI severity strata (Stages 0-3). To ensure balanced
representation and facilitate unbiased phenotypic discovery across
the full spectrum of AKI severity (total n = 2281), we used an equal
sampling strategy by selecting an identical number of patients from
each AKI stage subgroup (AKI stages 0-3) for clustering analysis.
Given that the smallest subgroup, AKI Stage 2, comprised 343 patients,
we randomly selected 343 patients from each AKI stage, resulting in a
total analytical cohort of 1372 patients.

Data availability

The raw, de-identified data used in this study are publicly
accessible through the Medical Information Mart for Intensive Care IV
(MIMIC-IV) database, available at https://mimic.mit.edu.'® MIMIC-
IV is an open-access, relational database constructed from the
electronic health records of patients admitted to the Beth Israel
Deaconess Medical Center in Boston, Massachusetts. Access to the
MIMIC-IV database requires completion of appropriate training and
approval under a data use agreement to ensure responsible and ethical
utilization of sensitive health information.

Ethical considerations

This study was conducted using data from the publicly available
MIMIC-IV database, which is fully anonymized and did not involve
direct interaction with human subjects, the collection of personal
information, or any procedures requiring informed consent. The
analysis was performed following ethical standards governing the use
of publicly available clinical data. The use of the MIMIC-IV database
requires completion of ethics training, ensuring responsible handling
of sensitive health information. No raw data were republished or
redistributed in this study, and all reported findings are based solely
on aggregated analyses of the data. Our study followed the ethical
guidelines specified in the Declaration of Helsinki and received ethics
approval from the institutional review board of our university with the
reference number of IR.SBMU.RETECH.REC.1403.896. In order to
acquire access to data, we successfully completed the CITI “Data or
Specimens Only Research” course (record ID: 53106331) and signed
PhysioNet credentialed health data use agreement 1.5.0 on March 17,
2025.

Data analyses

The initial phase of analysis involved rigorous data preprocessing
to ensure completeness and reliability. Variables showing large
missingness (>20%), high cardinality, or severe binary imbalance
(<10% prevalence) were excluded. Redundant features with strong
collinearity (Spearman p > 0.5) were filtered to decrease the risk of
multicollinearity. This moderate threshold was chosen to prevent
collinearity-driven distortions in distance-based clustering and to
promote model parsimony suitable for clinical translation. Missing
data were imputed using predictive mean matching to preserve
distributional properties. Factorial analysis of mixed data was used to
project high-dimensional clinical data into lower-dimensional princi-
pal components. Hierarchical clustering on principal components was
applied to the transformed data to identify latent patient subgroups.
The number of clusters was suggested by the dendrogram and
supported further by average silhouette width, which quantifies intra-
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cluster cohesion and inter-cluster separation. The clustering validity
was further supported by the cophenetic correlation coefficient,
which measured the efficacy of the dendrogram. Variable contribu-
tions and squared cosine (Cos?) metrics were used to identify the most
informative features. Cluster differentiation was statistically validated
through chi-squared tests comparing AKI stage and mortality
distributions. Survival characteristics across clusters were analyzed
using Kaplan—-Meier survival curves with log-rank testing. To further
characterize cluster-defining features, a logistic regression model was
trained using high-importance variables identified from the clustering
phase. Hyperparameter tuning for model regularization (alpha and
lambda) was performed via 10-fold cross-validation. Classification
performance with 10-fold cross-validation was evaluated using the
area under the ROC curve (AUC), sensitivity, specificity, accuracy,
kappa statistic, and positive/negative predictive values. A confusion
matrix was used to assess classification agreement.

Results
Sample

The sample included 1372 patients with AKI severity evenly
distributed across stages 0-3 (n = 343 per stage). The median follow-
up time was 5.5 days with an interquartile range of 3.1-11.9 days.
There were no duplicate rows in the study dataset. Fig. 1 illustrates the
initial variables and the patterns of missing data. In total, 11.4% of the
initial data were missing. We then excluded variables with >20%
missing data from further analysis: cardiac output, C-reactive protein,
direct bilirubin, central venous pressure, arterial O, saturation, serum
albumin, and marital status. Furthermore, the variable race was
excluded due to its high cardinality (30 levels). Binary features were
also evaluated for imbalance, and those with fewer than 10% positive
cases were excluded from the analysis. Specifically, among comorbid-
ities, liver disease (3.7% positive), type 1 diabetes mellitus (2.2%),
cerebrovascular disease (1.2%), and acute myocardial infarction
(0.4%) were excluded. Similarly, medication use variables of
dobutamine (4.6%), milrinone (3.1%), dopamine (1.5%), and
bumetanide (1.3%) were also excluded due to low prevalence.
Fig. 2 illustrates the heatmap of correlations among the study
variables using Spearman’s correlation coefficients. There were large
and statistically significant correlation between ALT and AST
(p = 0.86), serum chloride and sodium (p = 0.63), norepinephrine
and vasopressin (p = 0.61), systolic and diastolic blood pressure
(p = 0.57), prothrombin time and total bilirubin (» = 0.55), arterial
CO, pressureand PH (p = —0.51), allp < 0.01. To reduce redundancy
and decrease the risk of multicollinearity, we excluded one variable
from each pair of the correlated features. Specifically, we excluded
AST, serum chloride, vasopressin, diastolic blood pressure, total
bilirubin, and arterial CO, pressure. These selections were based on
clinical relevance, physiological specificity, and the goal of retaining
the variable that provides broader or more direct insight into patient
status. The remaining data contained only 3.8% missing values, which
were imputed using predictive mean matching.

Clustering

Fig. 3A presents a scatter plot of the first and second principal
components, with deceased patients indicated in black. A greater
concentration of deceased patients is observed on the right side of the
plot, suggesting an association between the first component and
mortality. Similarly, Fig. 3B displays the same scatter plot colored
according to AKI stages (0-3). Patients with lower AKI stages are
predominantly located on the left side of the plot. Stages 1 and 2 show
substantial overlap, particularly along the first principal component.
Hierarchical clustering on principal components best suggested the
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Fig. 2. The heatmap of pairwise Spearman’s correlations among study variables.

presence of two clusters (Fig. 3C). The average silhouette width was
0.56, indicating moderately well-separated clusters. The cophenetic
correlation coefficient was 0.59, suggesting that the hierarchical
clustering dendrogram reasonably preserved the original distance
structure. Fig. 3D presents a scatter plot illustrating the results of the

hierarchical clustering. Fig. 3E and F illustrate
contributions and the squared cosine (Cos?) values o

respectively, indicating that the clusters can be effectively distin-
guished using a subset of patient features. The clear separation

between the two cluster centroids, together with the

clinical severity along the first principal component, indicates that the

clustering scheme may hold prognostic significance. Cluster 1 includ-
ed 701 patients, and cluster 2 included 671 patients. Cluster
1 included 314 (44.8%), 159 (22.7%), 148 (21.1%), and 80
(11.4%) patients with AKI stages 0, 1, 2, and 3, respectively, while
cluster 2 included 29 (4.3%), 184 (27.4%), 195 (29.1%), and 263
(39.2%) patients across the same stages. There was a significant
difference in the distribution of AKI severity between the clusters,
22(3) = 342.210, p < 0.001. There was also a statistically significant
difference in mortality rates between clusters 1 (145 deaths; 21.9%)
and 2 (367 deaths; 54.7%), (1) = 154.500, p < 0.001, odds ratio
(95% CI) = 4.28 (3.39, 5.42). Overall, cluster 2 was a high-risk

the variable
f the variables,

distribution of
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Fig. 3. (A) Scatter plot of the first two principal components, with deceased patients marked in black. A higher frequency of deceased patients is visible on the right side of
the plot, indicating an association between the first component and mortality. (B) Scatter plot of the first two principal components colored by AKI stages (0-3). Patients
with lower AKI stages are represented mainly on the left, with stages 1 and 2 overlapping along the first principal component. (C) Dendrogram from hierarchical clustering
performed on the principal components, suggesting two distinct patient clusters. (D) Scatter plot showing patient clusters derived from hierarchical clustering on principal
components. (E) Variable contributions to the clustering, highlighting patient features that distinguish the two clusters above the average contribution (indicated by the
dashed red line). (F) Squared cosine (Cos?) values for the variables, indicating the quality of variable representation.

subgroup of patients with greater AKI severity and higher mortality,
signifying a poorer prognosis compared with cluster 1. Fig. 4A
demonstrates a significant difference in 30-day survival probability
between the two clusters, as confirmed by the log-rank test.

Cluster profiling

We developed a logistic regression model to evaluate the
discriminative ability of the two clusters using the features identified
as important in the cluster analysis. Hyperparameter tuning via 10-
fold cross-validation identified the optimal logistic regression model
parameters with an alpha of 0.100 and a lambda of 0.044. Table 1

presents the logistic regression model showing variables that
differentiate the two clusters and identify a distinct high-risk
phenotype. Variables related to critical illness severity — such as
sepsis, vasopressor use, chronic comorbidities (e.g., chronic kidney
disease and heart failure), and markers of organ dysfunction — were
strongly associated with membership in the high-risk cluster. The
regression coefficients and odds ratios indicate that these features are
powerful predictors of cluster assignment. Additionally, elevated
respiratory and heart rates were statistically significant, further
supporting the physiological distinctiveness of this group. In contrast,
higher arterial oxygen levels, normal pH, and older age were
negatively associated with high-risk cluster membership. These
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A 1004 Table 2
' Confusion matrix and performance metrics for the study logistic model (positive
class = class 2).
-.0.751 Reference
= Cluster 1 Cluster 2
o]
S Confusion matrix
o o
= Prediction
(_?; 0.50 h Cluster 1 642 59
> ! Cluster 2 59 612
s : / Performance metrics
(/3) : : Accuracy (95% CI) 0.914 (0.898, 0.928)
0.25 < 0.0001 : : No information rate 0.511
P ! ' 1 [Accuracy >no information rate] p <0.001*
] : Kappa 0.8279
! ! Sensitivity 0.912
0.001 | I 1 I | | Specificity 0.916
5 10 15 20 25 30 Positive predictive value 0.912
Time (day) Negative predictive value 0.916
. Area under the curve 0.976
Number at risk
% IR 306 150 105 50 38 25 Significant at p < 0.001.
& clust=2 438 253 154 105 61 45 statistical patterns may help clinicians identify ICU patients with
5 10 15 20 25 30 phenotypic features compatible with more severe AKI trajectories.
Time (day) Model performance was evaluated using 10-fold cross-validation.
p 8
B Fig. 4B presents the model’s performance, as measured by the area
1.00- e under the ROC curve (AUC). The large AUC demonstrated the model’s
0.904 i strong performance in distinguishing the two clusters, thereby
' A validating the effectiveness of the clustering scheme. Table 2
S 0751 154 summarizes the diagnostic performance of the model in identifying
g # the positive class (class 2) among the clustered patients. The logistic
= L7 model demonstrated strong and balanced classification performance,
2 0.50- P effectively distinguishing between the two clusters with high
'g L7 concordance between predicted and actual labels. The diagnostic
Q e accuracy indicates minimal systematic bias in misclassification.
g 0.254 e . AUC = 0.976 Overall, these results support the model’s reliability and robustness
= L in identifying the two patient profiles.
0.101 i
0.004 .*° . .
— ' . ; v , ) Discussion
0.00 0.10 0.25 0.50 0.75 0.90 1.00

False positive fraction

Fig. 4. (A) Kaplan—Meier survival curves showing 30-day survival probability for
the two clusters. A significant difference between clusters was observed by the log-
rank test, with cluster 2 showing higher mortality. (B) Receiver operating
characteristic (ROC) curve illustrating the performance of the logistic model in
discriminating between the two clusters. The area under the curve (AUC)
demonstrates strong model accuracy and robustness.

Table 1
The logistic model for cluster profiling.

This study aimed to identify phenotypes of ICU patients concerning
AKI through a data-driven clustering framework, hypothesizing that
multidimensional patient profiles could identify prognostically
meaningful subgroups beyond conventional AKI staging. The findings
confirmed the presence of distinct clinical clusters associated with
varying degrees of physiologic derangement and outcome risk. By
incorporating a wide range of clinical, laboratory, and therapeutic
variables, the clustering model captured heterogeneity that is not
reflected in serum creatinine-based staging systems. The unsupervised

Characteristic Total Cluster 1 Cluster 2 Coeff. (SD) AOR (95% CI) p

Sepsis (%) 523 (38.1) 87 (12.4) 436 (65.0) 3.663 (0.305) 38.98 (21.42, 70.93) <0.001*
Norepinephrine (%) 596 (43.4) 147 (21.0) 449 (66.9) 2.815 (0.317) 16.7 (8.97, 31.06) <0.001*
Chronic kidney disease (%) 336 (24.5) 98 (14.0) 238 (35.5) 2.694 (0.324) 14.79 (7.84, 27.9) <0.001*
Heart failure (%) 443 (32.3) 156 (22.3) 287 (42.8) 2.573 (0.31) 13.11 (7.14, 24.07) <0.001*
Respiratory failure (%) 731 (53.3) 246 (35.1) 485 (72.3) 1.874 (0.255) 6.52 (3.95, 10.74) <0.001*
Epinephrine (%) 177 (12.9) 55 (7.8) 122 (18.2) 1.53 (0.445) 4.62 (1.93, 11.05) 0.001*
Phosphorus (mg/dL) 4.4 (2.0 3.7(.9 5.2 (2.2) 0.691 (0.077) 2.00 (1.72, 2.32) <0.001*
Furosemide (%) 642 (46.8) 275 (39.2) 367 (54.7) 0.638 (0.286) 1.89 (1.08, 3.31) 0.026*
Phenylephrine (%) 482 (35.1) 221 (31.5) 261 (38.9) 0.192 (0.287) 1.21 (0.69, 2.13) 0.505
Respiratory rate (insp/min) 19.9 (6.9) 17.7 (5.8) 22.2 (7.1) 0.119 (0.02) 1.13 (1.08, 1.17) <0.001*
Heart rate (bpm) 91.7 (21.0) 84.6 (17.2) 99.2 (22.0) 0.069 (0.008) 1.07 (1.06, 1.09) <0.001*
Magnesium (mg/dL) 2.2 (0.7) 2.2 (0.6) 2.2 (0.7) 0.068 (0.184) 1.07 (0.75, 1.54) 0.712
Arterial O, pressure (mmHg) 179.3 (112.6) 220.2 (120.5) 136.6 (84.9) —0.01 (0.001) 0.99 (0.99, 0.99) <0.001*
Age (year) 60.1 (14.0) 60.3 (13.6) 60.0 (14.3) —0.022 (0.009) 0.98 (0.96, 1.00) 0.013*
pH (units) 7.3 (0.1) 7.4 (0.1) 7.3 (0.1) —-12.946 (1.516) 0.00 (0.00, 0.00) <0.001*

SD, standard deviation; AOR, adjusted odds ratio.

" Significant at p < 0.001.



NEFRO-501469; No. of Pages 9

M. Fathi, N. Markazi Moghaddam, H. Markazi Moghadam et al.

learning strategy revealed a high-risk cluster characterized by
systemic inflammation, cardiovascular compromise, and multiorgan
dysfunction. The logistic profiling model demonstrated that features
such as sepsis, chronic kidney disease, heart failure, respiratory
failure, and vasopressor use - particularly norepinephrine and
epinephrine — were strongly associated with this high-risk cluster.
Additionally, elevated serum phosphorus, increased respiratory and
heart rates, and loop diuretic administration further contributed to the
cluster differentiation, suggesting a convergence of hemodynamic
instability and therapeutic intensity. In contrast, parameters such as
higher arterial oxygenation and a higher blood pH appeared inversely
associated with the high-risk phenotype, reinforcing the multidimen-
sional nature of critical illness severity. This methodology enabled
precise identification of vulnerable ICU populations and provided a
foundation for future phenotype-targeted strategies in critical care
settings.

Recent studies have supported the application of unsupervised
machine learning in identifying phenotypically distinct subtypes
among ICU patients with AKI. A study on dialysis-requiring AKI
showed that phenotypes characterized by systemic inflammation,
hemodynamic instability, and organ dysfunction correlate with
significantly worse outcomes.?’ Deep learning-based models have
also suggested clinically meaningful AKI subgroups with differential
mortality risks, highlighting the limitations of serum creatinine-based
staging alone.”” Tan et al. found AKI phenotypes with variable
trajectories and clinical patterns, which could not be captured using
KDIGO criteria alone.”®> Meanwhile, compared with the seven
subgroups identified by Tan et al., our identification of a smaller
number of clinically distinct clusters enhances practical applicability
by facilitating straightforward risk stratification and bedside imple-
mentation. Smith et al. suggested that AKI is a multifactorial
syndrome best understood via longitudinal and multivariate modeling
rather than conventional creatinine thresholds.”* Thongprayoon et al.
also used clustering in an AKI population and found distinct clusters
with divergent comorbidities and laboratory profiles associated with
outcomes, supporting our multimodal data integration.>> However,
both Tan et al. and Thongprayoon et al. did not include patients
without AKI in their sample. Our use of routinely collected ICU data
supports prior work suggesting that early AKI risk can be predicted
using accessible variables, enabling real-time clinical application.?®
Our cluster-based prognostic differentiation is consistent with studies
emphasizing the importance of AKI subtyping for guiding personal-
ized treatment approaches.?” Overall, the findings of this study are
congruent with — and further reinforce — the growing body of evidence
supporting phenotype-driven stratification in critical care practice.

The distinct clinical variables that separated the high- and low-risk
AKI phenotypes in our study reflect pathophysiologic mechanisms
driving organ dysfunction in critical illness. Sepsis, a dominant feature
in the high-risk cluster, contributes to AKI through a combination of
systemic inflammation, microvascular dysregulation, and mitochon-
drial dysfunction, leading to renal tubular cell stress and apoptosis.>®
The use of vasopressors, particularly norepinephrine, while critical for
maintaining perfusion, reflects the severity of shock and often
exacerbates renal hypoperfusion and endothelial injury via excessive
vasoconstriction and impaired autoregulation.>® Chronic kidney
disease, more prevalent in our high-risk group, predisposes patients
to AKI through maladaptive repair, capillary rarefaction, and pre-
existing nephron loss, creating a vulnerability to sepsis and
nephrotoxins.®® Heart failure compounds renal injury through
elevated venous pressures, reduced cardiac output, and neurohor-
monal activation, which reduce glomerular filtration via altered
transcapillary pressures.® Respiratory failure and mechanical
ventilation contribute to AKI through hypoxia, inflammation, and
elevated intrathoracic pressures that impair renal perfusion and
venous return.>? Low blood pH further disrupts cellular metabolism,
enhances inflammation, and impairs myocardial contractility,
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exacerbating multiorgan dysfunction and correlating with higher
mortality risk.>* Also, hyperphosphatemia, observed in the high-risk
cluster, reflects cellular breakdown, impaired renal clearance, and
systemic catabolism, all of which are markers of severe illness and
poor prognosis.>* Age appeared inversely associated with high-risk
cluster membership, suggesting that younger patients in our cohort
were more frequently represented among those with severe acute
physiologic disturbances. This pattern may reflect the predominance
of high-intensity conditions such as sepsis, multiorgan failure, and
vasopressor-dependent shock in younger individuals, who might
develop more pronounced inflammatory and hemodynamic
responses. Conversely, older patients, while burdened with chronic
comorbidities, may experience less abrupt physiologic deterioration
during ICU admission, aligning with the lower-risk phenotype.®”
Together with higher arterial oxygenation and normal pH, these
features may represent relative protective factors within the
multidimensional context of AKI severity. Overall, these variables
represent interrelated pathophysiological pathways connecting car-
diovascular compromise, metabolic derangement, and inflammation,
supporting the biological plausibility and clinical applicability of our
phenotypic classification.

Clinical implications

This study presented evidence that AKI phenotypic profiling
provides enhanced risk stratification relative to conventional serum
creatinine-based staging by integrating a broader spectrum of
patients’ clinical characteristics. We suggested that high-risk patients
can be identified using routinely available clinical data, enabling
timely risk recognition. The strong discriminative performance of the
logistic model supports the feasibility of building real-time clinical
decision support tools to stratify ICU patients into phenotypic clusters
at admission. These phenotypic profiles could guide tailored
interventions; for example, patients in the high-risk cluster may
benefit from closer monitoring, early nephrology consultation, and
aggressive hemodynamic and metabolic optimization. This two-
cluster approach may improve prognostic accuracy, facilitate
communication with families, and support shared decision-making,
compared with the conventional four-stage severity classification.
Phenotype-guided research and trials enable the design of more
targeted therapies and personalized treatment strategies in AKI
management.

Limitations

This study had several limitations that warrant consideration. The
analysis was based on retrospective data, which may introduce biases
inherent to observational studies, such as unmeasured confounding
factors. Although the clustering approach was unsupervised, selection
bias related to missing data and variable exclusion criteria cannot be
fully eliminated. Nevertheless, the data preprocessing ensured
statistical integrity by removing highly imbalanced or collinear
variables and applying robust imputation techniques. Race can affect
the generalizability of research findings to other populations.
However, we excluded it due to its high cardinality, sparse
distribution, and inconsistent documentation, which could distort
factor projections and bias cluster centroids. Our analysis focused
primarily on physiological and biochemical variables rather than
sociodemographic determinants. Comorbidity variables with fewer
than 10% positive cases were also excluded to prevent statistical
sparsity and instability in the factorial analysis. Inclusion of rare
features can distort covariance structures and compromise cluster
reproducibility. The exclusion preserved statistical power, ensured
meaningful variable contributions to multidimensional variance, and
enhanced clinical interpretability of the resulting phenotypes. We
used advanced unsupervised learning for phenotype discovery,
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provided equal representation of AKI severity stages, and internally
validated both clustering and classification performance. While these
features support the robustness and translational potential of the
findings, external validation with an independent dataset is still
needed to confirm the generalizability and reproducibility of the
model across diverse populations and clinical settings.

Conclusion

This study identified two clinically and prognostically distinct
phenotypic subgroups among ICU patients concerning AKI using a
data-driven clustering approach applied to high-dimensional clinical
data from the MIMIC-IV database. Unlike conventional AKI staging
systems that rely on serum creatinine or urine output, our model
integrated a wide range of clinical, laboratory, and treatment
variables to identify latent patient profiles with significantly different
outcomes. The high-risk cluster was characterized by a higher
prevalence of sepsis, chronic kidney disease, heart failure, vasopressor
use, respiratory failure, and derangements in vital signs and metabolic
parameters, all of which were strongly predictive of mortality and
severe AKI progression. Our logistic profiling model showed high
performance in distinguishing between clusters, confirming the
clinical validity of the phenotypic stratification. The ability to detect
these phenotypes using routinely collected ICU data suggests that real-
time clinical implementation is feasible, offering opportunities to
enhance early identification, personalize management strategies, and
guide more informed communication with patients and families.
These findings support a shift toward phenotype-based risk stratifica-
tion and personalized intervention in critical care and highlight the
translational potential of machine learning tools in improving AKI
outcomes.
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