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Key Points

« Nomograms predict HyperK, KRT, and MAKE in AKI using routine clinical
data.

« KRT models showed excellent accuracy (AUC up to 0.96) for both sexes.

e Tools enable early, personalized risk stratification in hospitalized AKI

patients.

Abstract

Background

Acute kidney injury (AKIl) is prevalent among hospitalized patients and is frequently
complicated by hyperkalemia (HyperK), kidney replacement therapy (KRT), and
major adverse kidney events (MAKE). Early prediction of these outcomes remains
a clinical priority.

Objective

To develop and internally validate nomograms using routinely collected clinical
variables to predict the risk of HyperK, KRT, and MAKE, including death and =25
mL/min/1.73 m? reduction in eGFR in hospitalized AKI patients.

Methods

This retrospective cohort study included 753 adult AKI patients without initial
HyperK, evaluated at a tertiary referral center from 2020 to 2024. Logistic
regression models identified predictors of HyperK and MAKE, stratified by sex.
Model performance was assessed via AUC, calibration, and predictive metrics.
Nomograms were constructed based on final multivariate models.

Results

During follow-up, 24% of patients developed HyperK. Independent predictors
included vasopressor use, shock, urinary obstruction, low hemoglobin, and higher
baseline potassium. The HyperK model demonstrated moderate discrimination
(AUC 0.68) but a high negative predictive value (97%). Sex-stratified nomograms
for MAKE, KRT, and mortality showed strong performance (AUCs 0.74-0.98), with
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highest accuracy observed in KRT models for both sexes (AUC 0.96). Predictors
varied by sex but commonly included volume overload, acid—base disorders,
uremia, and elevated creatinine.

Conclusion

We developed pragmatic and accessible nomograms capable of predicting
HyperK, KRT, and MAKE in AKI patients using standard clinical data. These tools
offer timely, personalized risk stratification and may support clinical decision-

making in diverse hospital settings.

Background

Acute kidney injury (AKI) occurs in 1 in 3 hospitalized patients,[1] increases the risk
of mortality[2] and is associated with the deterioration of physiological functions of
practically all organs,[3] even more so when AKI warrants the initiation of kidney
replacement therapy (KRT).[4] Among the pathophysiological alterations
associated with this high mortality rate are electrolyte dysregulations resulting from
kidney dysfunction; hyperkalemia (HyperK) is the most studied electrolyte
disturbance in this context. It occurs more frequently in patients with AKI, being 20
times more likely compared to the general population.[5] It occurs in up to 20% of
cases, in this context is easily explained because kidney function is the most
important determinant for potassium excretion,[6] but also because of the usual
etiologies that accompany AKI, which also increase the risk of HyperK[7]. Patients
with AKI who develop HyperK are intuitively those with the highest disease burden,
have more comorbidities, manifested by higher severity scores, higher serum
creatinine values, higher uremic toxin load, more volume overload, more severe
metabolic acidosis.[8] HyperK associated with AKI is one of the most feared
complications, it is associated with increased mortality[9] it is often observed
secondary to urinary obstruction, dehydration, rhabdomyolysis, nephrotoxic
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drugs,[10] for this reason, it is one of the most common reasons to urgently start
KRT.[11] Clinical trials and meta-analyses recommend initiating KRT in patients
with AKI and HyperK refractory to medical management.[12] Therefore, we
consider that anticipating the event of HyperK in patients with AKIl is relevant, as it
would have the potential to alert the clinician about its incidence, raise awareness,
promote serum potassium monitoring, perform actions that could prevent
potassium elevation, and eventually treat it in a timely manner, thereby limiting
adverse events. To our knowledge, the possibility of anticipating AKI complications
such as HyperK, the initiation of KRT, and mortality has not been deeply explored.
In order to reduce this information gap, we propose the creation of simple
nomograms of common variables taken during hospitalization, which have the
capacity to predict the incidence of HyperK, initiation of KRT, deterioration of
kidney function, and mortality during the following days in hospitalized patients with
AKI.

Methods

Study population and data collection

We performed a retrospective cohort study at Hospital Civil de Guadalajara Fray
Antonio Alcalde, Mexico, between August 2020 and June 2024. All included
patients were hospitalized and were consulted by the nephrology service and met
KDIGO serum creatinine criteria (sCr) for AKI were initially screened. Patients were
eligible for inclusion if they were 218 years old, had a known baseline sCr
measurement within the preceding six months, and had available follow-up
laboratory data during hospitalization. Patients were excluded if they had HyperK
at the time of the first nephrology consultation, were receiving KRT, had undergone
kidney transplantation, were pregnant, or had incomplete clinical or laboratory data
precluding outcome assessment. Clinical characteristics, demographic data, and
laboratory values were retrospectively recorded via automated data extraction from
our institutional electronic health record system. The diagnosis of AKI was made
using the serum creatinine (sCr) KDIGO criteria, urine output criteria were not
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applied due to incomplete and inconsistent documentation of hourly urine output in
the electronic medical record. Chronic kidney disease (CKD) was defined as an
estimated glomerular filtration rate (eGFR) of less than 60 ml/min/1.73 m?2 for more
than three months.[13] We selected the MAKE outcomes to improve the
consistency of AKI outcomes reported across studies. MAKE outcomes were
defined as death, a new requirement for kidney replacement therapy (KRT), or
worsening kidney function by a = 25% decline in the eGFR from baseline.[14] We
selected the MAKE criteria during hospitalization, as it appeared most appropriate
given that the majority of AKI patients initiate KRT and die during this
timeframe.[13] We included patients with known baseline sCr levels, defined as the
most recent sCr value in the last six months before hospitalization, and who had
sCr levels in the following days to assess MAKE analyses in our study. We
describe contributing to AKI, eg, sepsis, shock, comorbidities, nephrotoxic among
others. We recorded biochemistry values such as hemoglobin, platelets,
leukocytes, glucose, urea, sCr, sodium, potassium, chlorine, phosphate, and
calcium. We defined baseline diuretics as the use of thiazides and furosemide.
The population included in the present study was limited to patients with AKI who
did not have HyperK at the first nephrology evaluation. We monitored patients with
more than three serum potassium tests to track their clinical course and detect
HyperK. The index potassium value was that obtained at the first visit, this had to
be within the normal range (3.5- 5.5 mEqg/L). We defined HyperK as serum
potassium >5.5 mEqg/L, since this value is associated with mortality in AKIL.[15] We
excluded pregnant women, patients aged <18 years, patients undergoing KRT,
kidney transplant recipients, and patients with HyperK at the first visit. All
participants gave their written informed consent. The indications for KRT included
fluid overload that was resistant to diuretics, severe HyperK, severe metabolic
acidosis, and uremic manifestations, such as encephalopathy, pericarditis, and
seizures.[16] Shock was defined as the presence of sustained hypotension
requiring vasopressor support to maintain a mean arterial pressure 265 mmHg, as
documented in the medical record. Shock and vasopressor use were recorded as
distinct clinical variables because not all patients receiving vasoactive support met
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criteria for distributive shock; some patients had cardiogenic shock and required
inotropic agents without vasopressors. Fluid overload was diagnosed based on
clinical assessment, including the presence of peripheral edema, pulmonary
congestion on physical examination or imaging, positive fluid balance, and/or the
need for diuretic escalation as recorded by the treating team.

The study was approved by the Hospital Civil de Guadalajara Fray Antonio Alcalde
Institutional Review Board (CE 180/24). The results were reported according to the
Strengthening the Reporting of Observational Studies in Epidemiology (STROBE)
guidelines[17] and the Transparent reporting of a multivariate prediction model for
individual prognosis or diagnosis (TRIPOD) statement.[18]

Objectives

The primary objective was to develop a nomogram to predict HyperK in AKI
patients during follow-up based on the clinical variables collected at round visits.
The Secondary objectives were to determine the development of HyperK in men
and women separately, the components of the MAKE composite variable, including
GFR reduction >25 ml/min/1.73 m2, death and KRT during follow-up.

Statistical methods

Descriptive statistics were employed to summarize demographic, clinical, and
laboratory characteristics. Categorical variables were expressed as frequencies
and percentages and compared using chi-square or Fisher’'s exact test.
Continuous variables were reported as medians with interquartile ranges (IQR) and
analyzed using the Mann—Whitney U test due to non-normal distributions. To
identify independent predictors of HyperK (serum potassium =5.5 mmol/L), KRT
initiation, mortality and MAKE, multivariate logistic regression models were
constructed. The events-per-variable (EPV) ratio was calculated for each
multivariable model, and all primary models met or exceeded the recommended
minimum EPV threshold of 10, reducing the risk of overfitting. Candidate variables
were selected based on univariate analysis (p < 0.20) and clinical relevance. A
backward stepwise selection strategy was used to derive the final models.
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Adjusted odds ratios (OR) and 95% confidence intervals (Cl) were reported for
each predictor. Model performance was evaluated using multiple metrics.
Discrimination was assessed via the area under the receiver operating
characteristic curve (AUC), while calibration was examined through Hosmer—
Lemeshow goodness-of-fit tests and calibration plots. Additional model diagnostics
included the Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC) to assess model parsimony. To assess clinical utility, several performance
indicators were calculated: accuracy, sensitivity, specificity, F1 score, Youden
index, and negative predictive value (NPV). Confusion matrices were constructed
to quantify classification errors. Notably, the KRT model exhibited high
discriminative power (AUC 0.96) and balanced performance across key indicators.
Based on the final multivariate models, nomograms were developed to enable
bedside estimation of individual risk probabilities for each outcome. These
graphical tools assign weighted point values to each predictor, facilitating
personalized clinical decision-making. All statistical analyses were conducted using
R software (version 4.4.2) and Stata , with a two-sided p-value < 0.05 considered
statistically significant.

Results

Between August 2020 and June 2024, a total of 1,171 patients hospitalized with
AKI were evaluated by the nephrology department. Among these, 755 patients
(64.4%) did not exhibit HyperK at the time of the first nephrology consultation. After
excluding 416 individuals who did not meet inclusion criteria and two pregnant
women, a final sample of 753 patients was included for analysis. During the follow-
up period, 182 patients (24%) developed HyperK, as depicted in Figure 1.

Primary Objective: Prediction of Hyperkalemia

Baseline characteristics stratified by the development of HyperK are presented in
Table 1. The mean age was 53.0 years (39.0, 66.0) and 38.8% (292) were male.
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Patients who developed HyperK showed a more severe clinical profile, with
significantly higher baseline serum potassium levels (median 4.7 vs. 4.2 mmol/L),
more frequent vasopressor use (40.1% vs. 24.5%), higher incidence of shock
(26.4% vs. 14.2%), and greater prevalence of volume overload (16.5% vs. 10.0%).
Interestingly, CKD was less prevalent in the HyperK group (13.2% vs. 21.7%).
Other differences included higher rates of acid—base disorders (15.9% vs. 7.7%)
and a modestly elevated BMI (26.1 vs. 25.0 kg/m?2), p for all <0.05. To predict the
development of HyperK, a multivariate logistic regression model identified five
independent predictors: vasopressor use (OR 1.62; 95% CI: 1.00-2.62), presence
of shock (OR 1.73; 95% CI: 1.00-2.97), urinary tract obstruction (OR 1.87; 95% ClI:
1.04-3.37), lower hemoglobin levels (OR 0.59; 95% CI: 0.36—0.98), and elevated
baseline potassium (OR 2.45; 95% Cl: 1.42—4.19), Table 2. Despite slightly better
AIC and BIC values in the univariate model, the multivariate model was selected
for its superior clinical applicability (AIC 795.01; BIC 850.49). The model’s
diagnostic performance, summarized in Supplemental Table 1, showed an
accuracy of 77%, sensitivity of 58%, specificity of 78%, and a high negative
predictive value of 97%, though with a modest AUC of 0.68 (Figure 2). These
findings support the model’'s use as a triage tool to rule out HyperK in low-risk
individuals. Based on the multivariate model, a nomogram was developed to
estimate individualized HyperK risk (Figure 3). This tool assigns weighted point
values to each significant predictor, allowing clinicians to compute a total score and
translate it into a predicted probability. For example, a patient presenting with
vasopressor use, urinary obstruction, low hemoglobin, and borderline potassium
values would accumulate a higher score, reflecting a higher estimated risk of
HyperK. The point allocation for each variable is detailed in Supplemental Table
1. The nomogram’s high negative predictive value and ease of use make it

particularly suitable for rapid clinical screening.
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Secondary Objectives: Prediction of MAKE and
Component Outcomes by Sex

In Male Patients

To assess the development of MAKE and its individual components in male
patients, four distinct multivariate models and corresponding nomograms were
constructed (Supplemental Figures 1A-1D). The MAKE model identified elevated
serum creatinine at admission (OR 4.28; 95% Cl: 2.34—7.84), uremia (OR 11.76;
95% Cl: 1.40-90.99), and cardiopathy (OR 10.01; 95% CI: 1.10-82.40) as strong
independent predictors, while non-steroidal anti-inflammatory drugs (NSAID) use
was associated with lower risk (OR 0.41; 95% CI: 0.22—-0.75). This model
demonstrated excellent sensitivity (96.5%), good accuracy (82.9%), and an AUC of
0.80. The associated nomogram translates these variables into an individualized
risk estimate (Supplemental Figure 1A), providing a reliable tool for early
detection of high-risk patients. The in-hospital mortality model identified
vasopressor use (OR 2.34; 95% Cl: 1.30-4.21), elevated serum creatinine (OR
2.11; 95% CI: 1.08-4.11), and older age (OR 1.89; 95% CI: 1.06-3.37) as
significant contributors to death. Despite low sensitivity (19.8%), the model
achieved high specificity (95.8%) and an AUC of 0.77, making the mortality
nomogram (Supplemental Figure 1B) particularly effective in identifying survivors.
The need for KRT prediction model incorporated nine predictors. The strongest
were acid—base disturbances (OR 87.20; 95% CI: 5.71-12.85), volume overload
(OR 24.95; 95% ClI: 1.42-38.00), HyperK (OR 10.07; 95% CI: 10.87-88.22),
uremia (OR 5.22; 95% CI: 2.45-11.70), and hypernatremia (OR 4.63; 95% CI:
8.00-34.40). Additional factors included elevated creatinine (OR 7.39; 95% ClI:
1.57-34.54), respiratory rate (OR 4.18; 95% CI: 1.26—13.91), serum glucose (OR
3.19; 95% CI: 1.02-9.99), and low platelet count (OR 0.27; 95% CI: 0.08-0.93).
The nomogram (Supplemental Figure 1C) achieved excellent performance (AUC
0.98; accuracy 94.8%), confirming its utility for clinical decision-making. For the
prediction of eGFR decline 225 mL/min/1.73 m?, significant predictors included
baseline creatinine (OR 3.70; 95% CI: 2.14-6.40), acid—base disturbances (OR
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5.38; 95% CI: 1.53-19.20), serum chloride (OR 2.21; 95% CI: 1.10—4.44), and
uremia (OR 2.53; 95% CI: 1.00-6.44). The nomogram (Supplemental Figure 1D)
achieved an AUC of 0.75 and a sensitivity of 93.8%, offering reliable identification

of patients at risk of functional deterioration.
In Female Patients

Among women, the MAKE nomogram (Supplemental Figure 2A) was developed
from a model that identified volume overload (OR 13.43; 95% CI: 1.08-141.96),
elevated urea (OR 5.75; 95% CI: 1.90-17.37), creatinine (OR 3.27; 95% Cl: 1.46—
7.31), and increased heart rate (OR 2.99; 95% CI: 1.17-7.66) as major predictors.
NSAID use was again associated with lower risk (OR 0.37; 95% CI: 0.16-0.85).
This model demonstrated an AUC of 0.79, high sensitivity (96.7%), and a robust F1
score (0.91), suggesting excellent detection capacity. The mortality model
(Supplemental Figure 2B) highlighted the following independent predictors: shock
(OR 11.01; 95% ClI: 3.61-33.60), hyperbilirubinemia (OR 26.97; 95% ClI: 1.12—
58.25), sepsis (OR 5.00; 95% Cl: 2.14-11.66), age (OR 2.74; 95% Cl: 1.16-6.47),
cerebrovascular disease (OR 7.56; 95% Cl: 1.55-37.12), and elevated heart rate
(OR 5.07; 95% CI: 1.40-18.43). Protective associations were observed for lower
BMI (OR 0.41; 95% CI: 0.19-0.91) and diabetes (OR 0.36; 95% CI: 0.15-0.85).
The model achieved an AUC of 0.84, with excellent specificity (95.3%). The need
for KRT model (Supplemental Figure 2C) identified acid—base disorders (OR
34.00; 95% Cl: 25.68—-39.47), volume overload (OR 33.81; 95% Cl: 32.86—293.38),
HyperK (OR 22.26; 95% Cl: 17.50-24.93), uremia (OR 34.33; 95% CI: 8.03—
133.00), and elevated platelet count (OR 4.26; 95% Cl: 1.17-15.59) as key
predictors. The nomogram performed exceptionally well (AUC 0.96; accuracy
95.2%; F1 score 0.92). Finally, the model for eGFR decline 225 mL/min/1.73 m? in
women included baseline creatinine as the only statistically significant predictor
(OR 3.39; 95% ClI: 1.75-6.58). Although simplified, the nomogram (Supplemental
Figure 2D) showed solid predictive performance (AUC 0.74), and sensitivity of
93.9%, making it a practical tool for early identification of renal deterioration.
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Discussion

In this cohort, we developed and validated predictive nomograms for HyperK, and
MAKE in hospitalized patients with AKI. Using routinely collected clinical variables
at the time of nephrology consultation, we constructed logistic regression models
stratified by sex and evaluated their predictive performance across multiple
outcomes. The nomograms demonstrated strong discriminative capacity,
particularly among women. While the model’s capacity to predict HyperK was
modest, its high negative predictive value suggests that it may be especially useful
to identify patients at low risk. These findings underscore the clinical relevance of
early risk stratification using predictive tools to guide timely intervention in AKI
management and support individualized decision-making in clinical practice. Sex-
stratified analyses were conducted a priori to account for known biological and
clinical differences between men and women in AKI. Stratification allowed the
development of sex-specific prediction models with greater clinical interpretability
and bedside applicability.

This baseline characteristics highlights that while many variables were comparable
between AKI patients who developed HyperK had higher rates of metabolic
acidosis, volume overload, shock, vasopressor use, and slightly elevated BMI.
These findings suggest that HyperK in AKI may be a marker of more severe or
complex clinical presentations, emphasizing the need for closer monitoring and
targeted interventions in this subgroup. The final multivariable model identifies
hemodynamic instability (including shock and vasopressor use) and obstructive
uropathy as key independent clinical predictors of HyperK in patients with AKI.
Vasopressor Use likely reflects a more severe hemodynamic compromise
contributing to impaired renal potassium excretion[19] as well as shock consistent
with impaired perfusion, acidosis, and cell lysis.[20] Obstruction significantly
increased the odds of HyperK, possibly due to decreased tubular excretion and
back-pressure on tubular function.[10] Our model demonstrates modest
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discriminative ability performance is better than chance (AUC 0.68) , from a clinical
standpoint, this model is more reliable for excluding HyperK than for confirming it.
It's very high negative predictive value (=97%) means that when the model
classifies a patient as low risk, true HyperK is unlikely, useful in high-volume
emergency or critical care settings to prioritize laboratory confirmation. However,
the low precision means that many model-flagged “at-risk” patients will not actually
be hyperkalemic; thus, model-positive results must be validated with serum
potassium measurement before treatment decisions. Given the moderate AUC and
only fair sensitivity, clinicians should not rely on the model to catch all hyperkalemic
cases, especially in hemodynamically unstable patients or those receiving
vasoactive drugs, where the clinical threshold for testing should remain low.

Several studies have evaluated the risk of developing HyperK in the context of AKI.
In patients presenting to the emergency department, the prevalence of HyperK in
those with AKI was 13%. Risk factors included AKI stage, use of potassium-
sparing diuretics, ACE inhibitors, and underlying CKD. Furthermore, HyperK was
associated with increased in-hospital mortality and a longer hospital stay.[9] Our
group demonstrated in a prospective cohort that the trajectory of serum potassium
during hospitalization for AKI has a significant prognostic impact; the transition
from normokalemia to HyperK was associated with an increased risk of in-hospital
mortality.[21] In patients with AKI and sepsis, elevated admission potassium levels
(=24.5 mmol/L) were associated with a significant increase in 30-day ICU
mortality.[22] Unlike previous studies that primarily focused on the prevalence,
clinical correlates, and prognostic implications of HyperK in AKI, our manuscript
advances the field by constructing and validating predictive nomogram specifically
designed to estimate the individual risk of developing HyperK, our approach
integrates routinely available clinical variables into predictive models with
demonstrable discriminative power, supporting early triage and targeted
intervention in AKI patients.

Multiple studies have evaluated the risk of developing MAKE in patients with AKI.

Recent meta-analyses and systematic reviews identify heterogeneous risk of

2
Page 12 of 26



MAKE after AKI, which depends on factors such as the stage and duration of AKI,
recovery of renal function, and underlying comorbidities. However, the association
is consistent across all clinical scenarios evaluated.[23, 24, 25] In recent years,
several nomograms have been developed to predict the risk of MAKE in patients
with AKI; in patients with sepsis and type 2 diabetes, a nomogram has
demonstrated excellent discriminatory ability to predict MAKE at 30 days, with an
AUC of 0.91 and good calibration.[26] While recent studies, such as that by Xin Q.
and colleagues, have developed nomograms with excellent discriminative capacity
for predicting 30-day MAKE in specific high-risk populations, our study expands the
applicability of predictive modeling by including a broader cohort of hospitalized
patients with AKI, regardless of etiology. Unlike Xin Q.’s model, which incorporates
biomarkers such as cystatin C, HDL, and apolipoprotein E, parameters not
routinely available in all clinical settings, our nomograms rely on widely accessible
clinical and biochemical variables present at the time of nephrology consultation.
Although the AUC of our MAKE prediction model was slightly lower (0.79 in women
and 0.80 in men), the models demonstrated good calibration and strong sensitivity,
supporting their practical use in real-time clinical decision-making. Furthermore,
our study uniquely stratified predictions by sex and concurrently addressed related
outcomes such as HyperK and KRT initiation, offering a more comprehensive tool

for risk stratification in AKI.

Predicting the need for KRT in patients with AKI remains largely based on classic
clinical and laboratory criteria as established in international clinical trials and
guidelines.[27], [28] Several new biomarkers have been evaluated to predict the
need for KRT, including NGAL (blood and urine), cystatin C, interleukin-18, and the
TIMP-2 x IGFBP7 product, with areas AUCs ranging from 0.67 to 0.86 [29, 30]
Their clinical utility remains limited due to moderate discriminative performance
(AUC 0.67-0.86), lack of standardized thresholds, and confounding by
comorbidities. In contrast, our study offers a pragmatic and robust alternative by
constructing nomograms based solely on routinely available clinical data collected
at the time of nephrology consultation. Our model achieved excellent predictive
accuracy for KRT initiation (AUC 0.96), with high sensitivity (88.7%) and specificity
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(98.5%), surpassing the performance typically reported for biomarker-based
models.

There are multiple nomograms and mortality prediction models in patients with AKI,
especially in the context of critically ill patients and those undergoing CRRT. The
nomogram developed by Wang et al. integrates variables at the start of CRRT,
showing excellent discriminatory capacity to predict 90-day mortality (C-index
0.810).[31] Other models, such as Zeng et al., with good performance in predicting
28-, 56-, and 84-day mortality in patients with AKI on CRRT (AUC 0.77-0.80).[32]
In specific populations, such as cirrhotic patients with AKI predicting 90- and 180-
day mortality.[33] In addition, nomograms exist for subgroups such as sepsis-
associated AKI and for predicting long-term survival in the ICU.[34, 35, 36] These
models often rely on complex variables such as SOFA scores, phosphate levels,
and serial laboratory data collected after CRRT initiation. In contrast, our study
offers a broader and more pragmatic approach by developing prediction tools
applicable to general hospitalized AKI patients prior to KRT initiation. Our
nomograms rely exclusively on routinely available clinical and biochemical
variables and demonstrated excellent discriminative performance, particularly for
predicting KRT (AUC 0.96) and MAKE (AUC 0.79-0.80). Moreover, by stratifying
analyses by sex and incorporating outcomes beyond mortality, including HyperK
and eGFR decline, our models provide a comprehensive and actionable framework
for early risk stratification, without the need for ICU-specific scores or delayed

variables.

Our results should be interpreted with their limitations, the most relevant of which is
the single-center design, which may limit the generalizability of the predictive
models to other healthcare settings with different patient populations, resource
availability, and clinical practices. The lack of external validation, although the
models were internally validated, they have not yet undergone external validation
in independent cohorts. Information regarding exposure to renin angiotensin
aldosterone system inhibitors was not available in our dataset; therefore, we were
unable to account for their potential influence on the development of HyperK. The
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exclusion of patients without nephrology consultation, which may introduce
selection bias and limit applicability in broader AKI populations. The absence of
dynamic or time-dependent variables, the models rely exclusively on static
variables obtained at the time of consultation. They do not incorporate dynamic
laboratory trends. The omission of urine output criteria may have led to
misclassification of AKI severity, particularly in patients with oliguric or anuric
presentations, and could have influenced the estimation of HyperK risk. The lack of
stratification by KDIGO AKI stages represents an important limitation, as this
classification is closely related to disease severity and the initiation KRT. The
limited inclusion of biomarkers, while the manuscript emphasizes using routinely
available variables, the exclusion of novel or emerging biomarkers (e.g., NGAL,
TIMP-2 x IGFBP7, cystatin C) may reduce comparative predictive precision relative
to more sophisticated models. Stratified analyses by CKD stage were descriptive
and underpowered, limiting our ability to draw definitive conclusions regarding
differential HyperK risk across CKD stages. The imbalanced outcome frequencies
(e.g., low mortality rate), which may affect the reliability and calibration of those

specific models.

This study possesses strengths. Clinically, the predictive nomograms were
developed using routinely available variables at the time of nephrology
consultation, allowing for immediate applicability in real-world settings without the
need for specialized biomarkers or advanced technologies. Unlike previous models
focused solely on mortality or dialysis initiation, our study addresses a broader
spectrum of clinically relevant outcomes, including HyperK, KRT, and MAKE.
Additionally, the stratified analysis by sex accounts for potential biological and
clinical differences between male and female patients, enhancing the precision of
risk prediction. The study also employed robust internal validation through a
comprehensive set of performance metrics, including accuracy, predictive values,

F1 score, and confusion matrices.

Conclusion
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We developed and internally validated clinically applicable nomograms for
predicting HyperK, the need for KRT, and MAKE in patients with AKI. By relying
solely on readily available clinical and laboratory data at the time of nephrology
consultation, these models offer accurate, timely, and personalized risk
stratification. Their strong discriminative performance and ease of use support their
potential integration into routine clinical practice to enhance decision-making and

improve outcomes in AKI management.
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Figure 1. Flow chart of the cohort.
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ROC curve for Hyperkalemia
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Figure 2. ROC curve predict HyperK in all patients.
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Nomogram predicting Hyperkalemia
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Figure 3. Nomogram predicting HyperK.

0
Page 20 of 26



Table 1. Baseline demographic and clinical characteristics of patients with AKI
according to the development of HyperK.

Variable Total (N = HyperK (N = Non-HyperK (N | P
753) 182) = 571)

Demographics,

comorbilities and

treatments

Age, years 53.0 (89.0, |[58.5(41.2, 53.0 (38.5, 66.0) | 0.467
66.0) 66.0)

Male 292 (38.8) 71 (39.0) 221 (38.7) 1.000

DM 237 (31.5) 58 (31.9) 179 (31.3) 0.927

HTN 252 (33.5) 57 (31.3) 195 (34.2) 0.528

CHF 72 (9.6) 18 (19.9) 54 (9.5) 0.885

CKD 148 (19.7) 24 (13.2) 124 (21.7) 0.013

CVE 35 (4.6) 5(2.7) 30 (5.3) 0.224

BMI 25.2 (22.8, |26.1(23.4, 25.0 (22.6, 28.4) | 0.029
28.7) 29.4)

Antihipertensives 222 (29.5) 51 (28.0) 171 (29.9) 0.642

Diuretics 258 (34.3) 69 (37.9) 189 (33.1) 0.244

AKI etiology and

acute complications

Shock 129 (17.1) 48 (26.4) 81 (14.2) 0.000

Vasopressors 213 (28.3) 73 (40.1) 140 (24.5) 0.000

Sepsis 370 (49.1) 85 (46.7) 285 (49.9) 0.496

Hypovolemia 163 (21.6) 40 (22.0) 123 (21.5) 0.918

Cardiorenal 101 (13.4) 21 (11.5) 80 (14.0) 0.454

Nephrotoxic 25 (1 3.3) 7 (3.8) 18 ( 3.2) 0.638

Urinary Obstruction 94 (12.5) 27 (14.8) 67 (11.7) 0.303

Metabolic acidosis 73 (9.7) 29 (15.9) 44 (7.7) 0.002

Fluid overload 87 (11.6) 30 (16.5) 57 (10.0) 0.023

Uremia 97 (12.9) 31 (17.0) 66 (11.6) 0.058

Biochemical

variables

Hemoglobin , g/L 9.2 (7.6, 9.5(7.8,12.3) |9.2(7.6,10.8) 0.090
10.9)

Platelets, U/L 191 (120, 176 (107, 286) | 192 (122,290) | 0.440
290)

Leucocytes , U/L 12 (8, 17) 12 (8, 18) 12 (8, 17) 0.657

Glucose , mg/dL 112.0 (86.0, | 115.4 (88.2, 110.0 (85.5, 0.127
146.0) 165.5) 142.0)

Urea mg/dL 143.0 (88.9, | 137.0 (83.2, 145.0 (90.7, 0.369
199.3) 198.7) 199.2)
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Creatinine, mg/dL 3.5 (2.2, 3.3(22,51) |3.6(22 5.6) 0.213
5.5)

Sodium, Meg/L 136.0 135.4 (131.0, |136.0 (131.0, |0.768
(131.0, 140.0) 141.0)
141.0)

Potassium, Meg/L 4.4 (3.8, 47 (43,51) |4.2(37, 4.7) 0.000
4.9)

Chloride, Meg/L 103.0 (97.8, | 103.0 (98.0, | 103.0 (97.6, 0.967
108.0) 108.0) 108.0)

Calcium , mg/dL 7.8 (7.3, 7.8(7.3,84) |7.8(7.3,823) 0.231
8.3)

Phosphorus , mg/dL | 5.3 (3.9, 53(3.8,6.7) |5.2(3.9,6.6) 0.974
6.6)

Categorical variables are expressed as number and percentage (n, %), and

continuous variables as median and interquartile range (IQR) or mean + standard
deviation (SD), as appropriate. BMI, body mass index; CHF, chronic heart failure;
CKD, chronic kidney disease; CVE, cerebrovascular event; DM, diabetes mellitus;

HTN, hypertension; IQR, interquartile range; MAP, mean arterial pressure; SD,

standard deviation.
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Table 2 Factors associated with HyperK in AKI patients by univariable and multivariable

analyses.

Variables | Univariate logistic regression | Multivariate logistic regression
OR (95% IC) P OR (95% IC) P

CKD 0.54 (0.33,0.86) | 0.013 0.60 (0.34, 1.05) 0.077
NSAID 0.70 (0.46, 1.05) | 0.093 0.68 (0.42, 1.10) 0.118
Diuretics 1.23(0.87,1.74) | 0.234 1.35 (0.89, 2.05) 0.157
Vasoppresor 2.06 (1.44,2.93) | 0.000 1.62 (1.00, 2.62) 0.050
Shock 2.16 (1.43,3.24) | 0.000 1.72 (1.00, 2.96) 0.050
Urinary 1.31(0.79, 2.10) | 0.271 1.86 (1.04, 3.36) 0.036
Obstruction
Metabolic 2.27 (1.36, 3.73) | 0.001 1.44 (0.78, 2.71) 0.245
acidosis
Fluid overload 1.78 (1.09, 2.85) | 0.018
Uremia 1.57 (0.97, 2.47) | 0.056 1.50 (0.87, 2.60) 0.139
BMI 1.02 (0.99, 1.05) | 0.089 0.69 (0.46, 1.04) 0.077
Weight 1.00 (0.99, 1.01) | 0.065
Hemoglobin 1.03(0.99,1.09) [0.114 0.59 (0.35, 0.97) 0.040
Potassium 2.20 (1.68, 2.90) | 0.000 2.44 (1.42,4.19) 0.001
Constant 0.36 (0.19,0.64) | 0.001

BMI, body mass index; CKD, chronic kidney disease; NSAID, Non steroidal Anti
Inflammatory Drug.
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