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Medina-González Alejandro Martı́nez Gallardo-González Luz
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Abundis-Mora GJ, Gómez-Fregoso JA, Garcı́a-Garcı́a G, Lizarazo PC, Sánchez EJ,

Development of a nomogram for predicting kidney replacement therapy and hyperkalemia in

acute kidney injury (2026), doi: https://doi.org/10.1016/j.nefro.2026.501489

https://doi.org/doi:10.1016/j.nefro.2026.501489
https://doi.org/10.1016/j.nefro.2026.501489


This is a PDF of an article that has undergone enhancements after acceptance, such as the

addition of a cover page and metadata, and formatting for readability. This version will undergo

additional copyediting, typesetting and review before it is published in its final form. As such,

this version is no longer the Accepted Manuscript, but it is not yet the definitive Version of

Record; we are providing this early version to give early visibility of the article. Please note

that Elsevier’s sharing policy for the Published Journal Article applies to this version, see:

https://www.elsevier.com/about/policies-and-standards/sharing#4-published-journal-article.

Please also note that, during the production process, errors may be discovered which could

affect the content, and all legal disclaimers that apply to the journal pertain.

© 2026 Published by Elsevier España, S.L.U. on behalf of Sociedad Española de Nefrología.

https://www.elsevier.com/about/policies-and-standards/sharing#4-published-journal-article


Page 1 of 26

Jo
ur

na
l P

re
-p

ro
of

 1 

Development of a nomogram for predicting 

kidney replacement therapy and hyperkalemia 

in acute kidney injury 

Running Head: Predicting KRT and hyperkalemia in AKI 

Development of a nomogram for predicting 

kidney replacement therapy and hyperkalemia 

in acute kidney injury 

Running Head: Predicting KRT and hyperkalemia in AKI 
 

 
Jonathan S. Chávez-Iñiguez1,2, J. Said Cabrera-Aguilar1,2, Gonzalo Rodríguez-

García 1, Guillermo Navarro-Blackaller 1,2, Ramón Medina-González 1, Alejandro 

Martínez Gallardo-González 1,2, Luz Alcantar-Vallin1,2, Gabriela J. Abundis-Mora1, 

Juan A. Gómez-Fregoso1,2, Guillermo García-García2 , Paula Catalina Lizarazo3, 

Emerson Joachin Sánchez3 

 

1 Nephrology Department, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, 

Jalisco, Mexico. 

2 University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico. 

3 Medical Department, Astra Zeneca, Mexico City, Mexico. 

Corresponding author: 

Jonathan S. Chávez-Íñiguez 

Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Colonia 
Centro. C.P. 44150. Guadalajara, Jalisco. Mexico. 

Phone: 0152 333942400 ext 49312. Email: jonarchi_10@hotmail.com 

Twitter: @JonathanNefro, ORCID https://orcid.org/0000-0003-2786-6667 

 

 



Page 2 of 26

Jo
ur

na
l P

re
-p

ro
of

 2 

Key Points 

 Nomograms predict HyperK, KRT, and MAKE in AKI using routine clinical 

data. 

 KRT models showed excellent accuracy (AUC up to 0.96) for both sexes. 

 Tools enable early, personalized risk stratification in hospitalized AKI 

patients. 

 

Abstract 
Background 

Acute kidney injury (AKI) is prevalent among hospitalized patients and is frequently 

complicated by hyperkalemia (HyperK), kidney replacement therapy (KRT), and 

major adverse kidney events (MAKE). Early prediction of these outcomes remains 

a clinical priority. 

Objective 

To develop and internally validate nomograms using routinely collected clinical 

variables to predict the risk of HyperK, KRT, and MAKE, including death and ≥25 

mL/min/1.73 m² reduction in eGFR in hospitalized AKI patients. 

Methods 

This retrospective cohort study included 753 adult AKI patients without initial 

HyperK, evaluated at a tertiary referral center from 2020 to 2024. Logistic 

regression models identified predictors of HyperK and MAKE, stratified by sex. 

Model performance was assessed via AUC, calibration, and predictive metrics. 

Nomograms were constructed based on final multivariate models. 

Results 

During follow-up, 24% of patients developed HyperK. Independent predictors 

included vasopressor use, shock, urinary obstruction, low hemoglobin, and higher 

baseline potassium. The HyperK model demonstrated moderate discrimination 

(AUC 0.68) but a high negative predictive value (97%). Sex-stratified nomograms 

for MAKE, KRT, and mortality showed strong performance (AUCs 0.74–0.98), with 
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highest accuracy observed in KRT models for both sexes (AUC 0.96). Predictors 

varied by sex but commonly included volume overload, acid–base disorders, 

uremia, and elevated creatinine. 

Conclusion 

We developed pragmatic and accessible nomograms capable of predicting 

HyperK, KRT, and MAKE in AKI patients using standard clinical data. These tools 

offer timely, personalized risk stratification and may support clinical decision-

making in diverse hospital settings. 

 

 

 
 
 

Background 

Acute kidney injury (AKI) occurs in 1 in 3 hospitalized patients,[1] increases the risk 

of mortality[2] and is associated with the deterioration of physiological functions of 

practically all organs,[3] even more so when AKI warrants the initiation of kidney 

replacement therapy (KRT).[4] Among the pathophysiological alterations 

associated with this high mortality rate are electrolyte dysregulations resulting from 

kidney dysfunction; hyperkalemia (HyperK) is the most studied electrolyte 

disturbance in this context. It occurs more frequently in patients with AKI, being 20 

times more likely compared to the general population.[5] It occurs in up to 20% of 

cases, in this context is easily explained because kidney function is the most 

important determinant for potassium excretion,[6] but also because of the usual 

etiologies that accompany AKI, which also increase the risk of HyperK[7]. Patients 

with AKI who develop HyperK are intuitively those with the highest disease burden, 

have more comorbidities, manifested by higher severity scores, higher serum 

creatinine values, higher uremic toxin load, more volume overload, more severe 

metabolic acidosis.[8] HyperK associated with AKI is one of the most feared 

complications, it is associated with increased mortality[9]  it is often observed 

secondary to urinary obstruction, dehydration, rhabdomyolysis, nephrotoxic 
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drugs,[10] for this reason, it is one of the most common reasons to urgently start 

KRT.[11] Clinical trials and meta-analyses recommend initiating KRT in patients 

with AKI and HyperK refractory to medical management.[12] Therefore, we 

consider that anticipating the event of HyperK in patients with AKI is relevant, as it 

would have the potential to alert the clinician about its incidence, raise awareness, 

promote serum potassium monitoring, perform actions that could prevent 

potassium elevation, and eventually treat it in a timely manner, thereby limiting 

adverse events. To our knowledge, the possibility of anticipating AKI complications 

such as HyperK, the initiation of KRT, and mortality has not been deeply explored. 

In order to reduce this information gap, we propose the creation of simple 

nomograms of common variables taken during hospitalization, which have the 

capacity to predict the incidence of HyperK, initiation of KRT, deterioration of 

kidney function, and mortality during the following days in hospitalized patients with 

AKI. 

 

Methods 

Study population and data collection 

We performed a retrospective cohort study at Hospital Civil de Guadalajara Fray 

Antonio Alcalde, Mexico, between August 2020 and June 2024. All included 

patients were hospitalized and were consulted by the nephrology service and met 

KDIGO serum creatinine criteria (sCr) for AKI were initially screened. Patients were 

eligible for inclusion if they were ≥18 years old, had a known baseline sCr 

measurement within the preceding six months, and had available follow-up 

laboratory data during hospitalization. Patients were excluded if they had HyperK 

at the time of the first nephrology consultation, were receiving KRT, had undergone 

kidney transplantation, were pregnant, or had incomplete clinical or laboratory data 

precluding outcome assessment.  Clinical characteristics, demographic data, and 

laboratory values were retrospectively recorded via automated data extraction from 

our institutional electronic health record system. The diagnosis of AKI was made 

using the serum creatinine (sCr) KDIGO criteria, urine output criteria were not 
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applied due to incomplete and inconsistent documentation of hourly urine output in 

the electronic medical record. Chronic kidney disease (CKD) was defined as an 

estimated glomerular filtration rate (eGFR) of less than 60 ml/min/1.73 m2 for more 

than three months.[13] We selected the MAKE outcomes to improve the 

consistency of AKI outcomes reported across studies. MAKE outcomes were 

defined as death, a new requirement for kidney replacement therapy (KRT), or 

worsening kidney function by a ≥ 25% decline in the eGFR from baseline.[14]  We 

selected the MAKE criteria during hospitalization, as it appeared most appropriate 

given that the majority of AKI patients initiate KRT and die during this 

timeframe.[13] We included patients with known baseline sCr levels, defined as the 

most recent sCr value in the last six months before hospitalization, and who had 

sCr levels in the following days to assess MAKE analyses in our study. We 

describe contributing to AKI, eg, sepsis, shock, comorbidities, nephrotoxic among 

others. We recorded biochemistry values such as hemoglobin, platelets, 

leukocytes, glucose, urea, sCr, sodium, potassium, chlorine, phosphate, and 

calcium. We defined baseline diuretics as the use of thiazides and furosemide. 

 The population included in the present study was limited to patients with AKI who 

did not have HyperK at the first nephrology evaluation. We monitored patients with 

more than three serum potassium tests to track their clinical course and detect 

HyperK.  The index potassium value was that obtained at the first visit, this had to 

be within the normal range (3.5- 5.5 mEq/L). We defined HyperK as serum 

potassium >5.5 mEq/L, since this value is associated with mortality in AKI.[15] We 

excluded pregnant women, patients aged <18 years, patients undergoing KRT, 

kidney transplant recipients, and patients with HyperK at the first visit. All 

participants gave their written informed consent. The indications for KRT included 

fluid overload that was resistant to diuretics, severe HyperK, severe metabolic 

acidosis, and uremic manifestations, such as encephalopathy, pericarditis, and 

seizures.[16] Shock was defined as the presence of sustained hypotension 

requiring vasopressor support to maintain a mean arterial pressure ≥65 mmHg, as 

documented in the medical record. Shock and vasopressor use were recorded as 

distinct clinical variables because not all patients receiving vasoactive support met 
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criteria for distributive shock; some patients had cardiogenic shock and required 

inotropic agents without vasopressors. Fluid overload was diagnosed based on 

clinical assessment, including the presence of peripheral edema, pulmonary 

congestion on physical examination or imaging, positive fluid balance, and/or the 

need for diuretic escalation as recorded by the treating team.  

The study was approved by the Hospital Civil de Guadalajara Fray Antonio Alcalde 

Institutional Review Board (CE 180/24). The results were reported according to the 

Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) 

guidelines[17] and the Transparent reporting of a multivariate prediction model for 

individual prognosis or diagnosis (TRIPOD) statement.[18] 

 

Objectives 

The primary objective was to develop a nomogram to predict HyperK in AKI 

patients during follow-up based on the clinical variables collected at round visits. 

The Secondary objectives were to determine the development of HyperK in men 

and women separately, the components of the MAKE composite variable, including 

GFR reduction >25 ml/min/1.73 m2, death and KRT during follow-up. 

 

Statistical methods 

Descriptive statistics were employed to summarize demographic, clinical, and 

laboratory characteristics. Categorical variables were expressed as frequencies 

and percentages and compared using chi-square or Fisher’s exact test. 

Continuous variables were reported as medians with interquartile ranges (IQR) and 

analyzed using the Mann–Whitney U test due to non-normal distributions. To 

identify independent predictors of HyperK (serum potassium ≥5.5 mmol/L), KRT 

initiation, mortality and MAKE, multivariate logistic regression models were 

constructed. The events-per-variable (EPV) ratio was calculated for each 

multivariable model, and all primary models met or exceeded the recommended 

minimum EPV threshold of 10, reducing the risk of overfitting. Candidate variables 

were selected based on univariate analysis (p < 0.20) and clinical relevance. A 

backward stepwise selection strategy was used to derive the final models. 
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Adjusted odds ratios (OR) and 95% confidence intervals (CI) were reported for 

each predictor. Model performance was evaluated using multiple metrics. 

Discrimination was assessed via the area under the receiver operating 

characteristic curve (AUC), while calibration was examined through Hosmer–

Lemeshow goodness-of-fit tests and calibration plots. Additional model diagnostics 

included the Akaike Information Criterion (AIC) and Bayesian Information Criterion 

(BIC) to assess model parsimony. To assess clinical utility, several performance 

indicators were calculated: accuracy, sensitivity, specificity, F1 score, Youden 

index, and negative predictive value (NPV). Confusion matrices were constructed 

to quantify classification errors. Notably, the KRT model exhibited high 

discriminative power (AUC 0.96) and balanced performance across key indicators. 

Based on the final multivariate models, nomograms were developed to enable 

bedside estimation of individual risk probabilities for each outcome. These 

graphical tools assign weighted point values to each predictor, facilitating 

personalized clinical decision-making. All statistical analyses were conducted using 

R software (version 4.4.2) and Stata , with a two-sided p-value < 0.05 considered 

statistically significant. 

 

Results 

Between August 2020 and June 2024, a total of 1,171 patients hospitalized with 

AKI were evaluated by the nephrology department. Among these, 755 patients 

(64.4%) did not exhibit HyperK at the time of the first nephrology consultation. After 

excluding 416 individuals who did not meet inclusion criteria and two pregnant 

women, a final sample of 753 patients was included for analysis. During the follow-

up period, 182 patients (24%) developed HyperK, as depicted in Figure 1. 

Primary Objective: Prediction of Hyperkalemia 

Baseline characteristics stratified by the development of HyperK are presented in 

Table 1. The mean age was 53.0 years (39.0, 66.0) and 38.8% (292) were male. 
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Patients who developed HyperK showed a more severe clinical profile, with 

significantly higher baseline serum potassium levels (median 4.7 vs. 4.2 mmol/L), 

more frequent vasopressor use (40.1% vs. 24.5%), higher incidence of shock 

(26.4% vs. 14.2%), and greater prevalence of volume overload (16.5% vs. 10.0%). 

Interestingly, CKD was less prevalent in the HyperK group (13.2% vs. 21.7%). 

Other differences included higher rates of acid–base disorders (15.9% vs. 7.7%) 

and a modestly elevated BMI (26.1 vs. 25.0 kg/m²), p for all <0.05. To predict the 

development of HyperK, a multivariate logistic regression model identified five 

independent predictors: vasopressor use (OR 1.62; 95% CI: 1.00–2.62), presence 

of shock (OR 1.73; 95% CI: 1.00–2.97), urinary tract obstruction (OR 1.87; 95% CI: 

1.04–3.37), lower hemoglobin levels (OR 0.59; 95% CI: 0.36–0.98), and elevated 

baseline potassium (OR 2.45; 95% CI: 1.42–4.19), Table 2. Despite slightly better 

AIC and BIC values in the univariate model, the multivariate model was selected 

for its superior clinical applicability (AIC 795.01; BIC 850.49). The model’s 

diagnostic performance, summarized in Supplemental Table 1, showed an 

accuracy of 77%, sensitivity of 58%, specificity of 78%, and a high negative 

predictive value of 97%, though with a modest AUC of 0.68 (Figure 2). These 

findings support the model’s use as a triage tool to rule out HyperK in low-risk 

individuals. Based on the multivariate model, a nomogram was developed to 

estimate individualized HyperK risk (Figure 3). This tool assigns weighted point 

values to each significant predictor, allowing clinicians to compute a total score and 

translate it into a predicted probability. For example, a patient presenting with 

vasopressor use, urinary obstruction, low hemoglobin, and borderline potassium 

values would accumulate a higher score, reflecting a higher estimated risk of 

HyperK. The point allocation for each variable is detailed in Supplemental Table 

1. The nomogram’s high negative predictive value and ease of use make it 

particularly suitable for rapid clinical screening. 



Page 9 of 26

Jo
ur

na
l P

re
-p

ro
of

 9 

Secondary Objectives: Prediction of MAKE and 

Component Outcomes by Sex 

In Male Patients 

To assess the development of MAKE and its individual components in male 

patients, four distinct multivariate models and corresponding nomograms were 

constructed (Supplemental Figures 1A–1D). The MAKE model identified elevated 

serum creatinine at admission (OR 4.28; 95% CI: 2.34–7.84), uremia (OR 11.76; 

95% CI: 1.40–90.99), and cardiopathy (OR 10.01; 95% CI: 1.10–82.40) as strong 

independent predictors, while non-steroidal anti-inflammatory drugs  (NSAID) use 

was associated with lower risk (OR 0.41; 95% CI: 0.22–0.75). This model 

demonstrated excellent sensitivity (96.5%), good accuracy (82.9%), and an AUC of 

0.80. The associated nomogram translates these variables into an individualized 

risk estimate (Supplemental Figure 1A), providing a reliable tool for early 

detection of high-risk patients. The in-hospital mortality model identified 

vasopressor use (OR 2.34; 95% CI: 1.30–4.21), elevated serum creatinine (OR 

2.11; 95% CI: 1.08–4.11), and older age (OR 1.89; 95% CI: 1.06–3.37) as 

significant contributors to death. Despite low sensitivity (19.8%), the model 

achieved high specificity (95.8%) and an AUC of 0.77, making the mortality 

nomogram (Supplemental Figure 1B) particularly effective in identifying survivors. 

The need for KRT prediction model incorporated nine predictors. The strongest 

were acid–base disturbances (OR 87.20; 95% CI: 5.71–12.85), volume overload 

(OR 24.95; 95% CI: 1.42–38.00), HyperK (OR 10.07; 95% CI: 10.87–88.22), 

uremia (OR 5.22; 95% CI: 2.45–11.70), and hypernatremia (OR 4.63; 95% CI: 

8.00–34.40). Additional factors included elevated creatinine (OR 7.39; 95% CI: 

1.57–34.54), respiratory rate (OR 4.18; 95% CI: 1.26–13.91), serum glucose (OR 

3.19; 95% CI: 1.02–9.99), and low platelet count (OR 0.27; 95% CI: 0.08–0.93). 

The nomogram (Supplemental Figure 1C) achieved excellent performance (AUC 

0.98; accuracy 94.8%), confirming its utility for clinical decision-making. For the 

prediction of eGFR decline ≥25 mL/min/1.73 m², significant predictors included 

baseline creatinine (OR 3.70; 95% CI: 2.14–6.40), acid–base disturbances (OR 
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5.38; 95% CI: 1.53–19.20), serum chloride (OR 2.21; 95% CI: 1.10–4.44), and 

uremia (OR 2.53; 95% CI: 1.00–6.44). The nomogram (Supplemental Figure 1D) 

achieved an AUC of 0.75 and a sensitivity of 93.8%, offering reliable identification 

of patients at risk of functional deterioration. 

In Female Patients 

Among women, the MAKE nomogram (Supplemental Figure 2A) was developed 

from a model that identified volume overload (OR 13.43; 95% CI: 1.08–141.96), 

elevated urea (OR 5.75; 95% CI: 1.90–17.37), creatinine (OR 3.27; 95% CI: 1.46–

7.31), and increased heart rate (OR 2.99; 95% CI: 1.17–7.66) as major predictors. 

NSAID use was again associated with lower risk (OR 0.37; 95% CI: 0.16–0.85). 

This model demonstrated an AUC of 0.79, high sensitivity (96.7%), and a robust F1 

score (0.91), suggesting excellent detection capacity. The mortality model 

(Supplemental Figure 2B) highlighted the following independent predictors: shock 

(OR 11.01; 95% CI: 3.61–33.60), hyperbilirubinemia (OR 26.97; 95% CI: 1.12–

58.25), sepsis (OR 5.00; 95% CI: 2.14–11.66), age (OR 2.74; 95% CI: 1.16–6.47), 

cerebrovascular disease (OR 7.56; 95% CI: 1.55–37.12), and elevated heart rate 

(OR 5.07; 95% CI: 1.40–18.43). Protective associations were observed for lower 

BMI (OR 0.41; 95% CI: 0.19–0.91) and diabetes (OR 0.36; 95% CI: 0.15–0.85). 

The model achieved an AUC of 0.84, with excellent specificity (95.3%). The need 

for KRT model (Supplemental Figure 2C) identified acid–base disorders (OR 

34.00; 95% CI: 25.68–39.47), volume overload (OR 33.81; 95% CI: 32.86–293.38), 

HyperK (OR 22.26; 95% CI: 17.50–24.93), uremia (OR 34.33; 95% CI: 8.03–

133.00), and elevated platelet count (OR 4.26; 95% CI: 1.17–15.59) as key 

predictors. The nomogram performed exceptionally well (AUC 0.96; accuracy 

95.2%; F1 score 0.92). Finally, the model for eGFR decline ≥25 mL/min/1.73 m² in 

women included baseline creatinine as the only statistically significant predictor 

(OR 3.39; 95% CI: 1.75–6.58). Although simplified, the nomogram (Supplemental 

Figure 2D) showed solid predictive performance (AUC 0.74), and sensitivity of 

93.9%, making it a practical tool for early identification of renal deterioration. 
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Discussion 

In this cohort, we developed and validated predictive nomograms for HyperK, and 

MAKE in hospitalized patients with AKI. Using routinely collected clinical variables 

at the time of nephrology consultation, we constructed logistic regression models 

stratified by sex and evaluated their predictive performance across multiple 

outcomes. The nomograms demonstrated strong discriminative capacity, 

particularly among women. While the model’s capacity to predict HyperK was 

modest, its high negative predictive value suggests that it may be especially useful 

to identify patients at low risk. These findings underscore the clinical relevance of 

early risk stratification using predictive tools to guide timely intervention in AKI 

management and support individualized decision-making in clinical practice. Sex-

stratified analyses were conducted a priori to account for known biological and 

clinical differences between men and women in AKI. Stratification allowed the 

development of sex-specific prediction models with greater clinical interpretability 

and bedside applicability.  

This baseline characteristics highlights that while many variables were comparable 

between AKI patients who developed HyperK had higher rates of metabolic 

acidosis, volume overload, shock, vasopressor use, and slightly elevated BMI. 

These findings suggest that HyperK in AKI may be a marker of more severe or 

complex clinical presentations, emphasizing the need for closer monitoring and 

targeted interventions in this subgroup. The final multivariable model identifies 

hemodynamic instability (including shock and vasopressor use) and obstructive 

uropathy as key independent clinical predictors of HyperK in patients with AKI. 

Vasopressor Use  likely reflects a more severe hemodynamic compromise 

contributing to impaired renal potassium excretion[19] as well as shock consistent 

with impaired perfusion, acidosis, and cell lysis.[20] Obstruction significantly 

increased the odds of HyperK, possibly due to decreased tubular excretion and 

back-pressure on tubular function.[10] Our model demonstrates modest 
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discriminative ability performance is better than chance (AUC 0.68) , from a clinical 

standpoint, this model is more reliable for excluding HyperK than for confirming it. 

It’s very high negative predictive value (≈97%) means that when the model 

classifies a patient as low risk, true HyperK is unlikely, useful in high-volume 

emergency or critical care settings to prioritize laboratory confirmation. However, 

the low precision means that many model-flagged “at-risk” patients will not actually 

be hyperkalemic; thus, model-positive results must be validated with serum 

potassium measurement before treatment decisions. Given the moderate AUC and 

only fair sensitivity, clinicians should not rely on the model to catch all hyperkalemic 

cases, especially in hemodynamically unstable patients or those receiving 

vasoactive drugs, where the clinical threshold for testing should remain low. 

Several studies have evaluated the risk of developing HyperK in the context of AKI. 

In patients presenting to the emergency department, the prevalence of HyperK in 

those with AKI was 13%. Risk factors included AKI stage, use of potassium-

sparing diuretics, ACE inhibitors, and underlying CKD. Furthermore, HyperK was 

associated with increased in-hospital mortality and a longer hospital stay.[9] Our 

group demonstrated in a prospective cohort that the trajectory of serum potassium 

during hospitalization for AKI has a significant prognostic impact; the transition 

from normokalemia to HyperK was associated with an increased risk of in-hospital 

mortality.[21] In patients with AKI and sepsis, elevated admission potassium levels 

(≥4.5 mmol/L) were associated with a significant increase in 30-day ICU 

mortality.[22] Unlike previous studies that primarily focused on the prevalence, 

clinical correlates, and prognostic implications of  HyperK in AKI, our manuscript 

advances the field by constructing and validating predictive nomogram specifically 

designed to estimate the individual risk of developing HyperK, our approach 

integrates routinely available clinical variables into predictive models with 

demonstrable discriminative power, supporting early triage and targeted 

intervention in AKI patients. 

Multiple studies have evaluated the risk of developing MAKE in patients with AKI. 

Recent meta-analyses and systematic reviews identify heterogeneous risk of 
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MAKE after AKI, which depends on factors such as the stage and duration of AKI, 

recovery of renal function, and underlying comorbidities. However, the association 

is consistent across all clinical scenarios evaluated.[23, 24, 25] In recent years, 

several nomograms have been developed to predict the risk of MAKE in patients 

with AKI; in patients with sepsis and type 2 diabetes, a nomogram has 

demonstrated excellent discriminatory ability to predict MAKE at 30 days, with an 

AUC of 0.91 and good calibration.[26] While recent studies, such as that by Xin Q. 

and colleagues, have developed nomograms with excellent discriminative capacity 

for predicting 30-day MAKE in specific high-risk populations, our study expands the 

applicability of predictive modeling by including a broader cohort of hospitalized 

patients with AKI, regardless of etiology. Unlike Xin Q.’s model, which incorporates 

biomarkers such as cystatin C, HDL, and apolipoprotein E, parameters not 

routinely available in all clinical settings, our nomograms rely on widely accessible 

clinical and biochemical variables present at the time of nephrology consultation. 

Although the AUC of our MAKE prediction model was slightly lower (0.79 in women 

and 0.80 in men), the models demonstrated good calibration and strong sensitivity, 

supporting their practical use in real-time clinical decision-making. Furthermore, 

our study uniquely stratified predictions by sex and concurrently addressed related 

outcomes such as HyperK and KRT initiation, offering a more comprehensive tool 

for risk stratification in AKI. 

Predicting the need for KRT in patients with AKI remains largely based on classic 

clinical and laboratory criteria as established in international clinical trials and 

guidelines.[27], [28] Several new biomarkers have been evaluated to predict the 

need for KRT, including NGAL (blood and urine), cystatin C, interleukin-18, and the 

TIMP-2 × IGFBP7 product, with areas AUCs ranging from 0.67 to 0.86 [29, 30] 

Their clinical utility remains limited due to moderate discriminative performance 

(AUC 0.67–0.86), lack of standardized thresholds, and confounding by 

comorbidities. In contrast, our study offers a pragmatic and robust alternative by 

constructing nomograms based solely on routinely available clinical data collected 

at the time of nephrology consultation. Our model achieved excellent predictive 

accuracy for KRT initiation (AUC 0.96), with high sensitivity (88.7%) and specificity 
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(98.5%), surpassing the performance typically reported for biomarker-based 

models.  

There are multiple nomograms and mortality prediction models in patients with AKI, 

especially in the context of critically ill patients and those undergoing CRRT. The 

nomogram developed by Wang et al. integrates variables at the start of CRRT, 

showing excellent discriminatory capacity to predict 90-day mortality (C-index 

0.810).[31] Other models, such as Zeng et al., with good performance in predicting 

28-, 56-, and 84-day mortality in patients with AKI on CRRT (AUC 0.77-0.80).[32] 

In specific populations, such as cirrhotic patients with AKI predicting 90- and 180-

day mortality.[33] In addition, nomograms exist for subgroups such as sepsis-

associated AKI and for predicting long-term survival in the ICU.[34, 35, 36] These 

models often rely on complex variables such as SOFA scores, phosphate levels, 

and serial laboratory data collected after CRRT initiation. In contrast, our study 

offers a broader and more pragmatic approach by developing prediction tools 

applicable to general hospitalized AKI patients prior to KRT initiation. Our 

nomograms rely exclusively on routinely available clinical and biochemical 

variables and demonstrated excellent discriminative performance, particularly for 

predicting KRT (AUC 0.96) and MAKE (AUC 0.79–0.80). Moreover, by stratifying 

analyses by sex and incorporating outcomes beyond mortality, including HyperK 

and eGFR decline, our models provide a comprehensive and actionable framework 

for early risk stratification, without the need for ICU-specific scores or delayed 

variables. 

Our results should be interpreted with their limitations, the most relevant of which is 

the single-center design, which may limit the generalizability of the predictive 

models to other healthcare settings with different patient populations, resource 

availability, and clinical practices. The lack of external validation, although the 

models were internally validated, they have not yet undergone external validation 

in independent cohorts. Information regarding exposure to renin angiotensin 

aldosterone system inhibitors was not available in our dataset; therefore, we were 

unable to account for their potential influence on the development of HyperK. The 
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exclusion of patients without nephrology consultation, which may introduce 

selection bias and limit applicability in broader AKI populations. The absence of 

dynamic or time-dependent variables, the models rely exclusively on static 

variables obtained at the time of consultation. They do not incorporate dynamic 

laboratory trends. The omission of urine output criteria may have led to 

misclassification of AKI severity, particularly in patients with oliguric or anuric 

presentations, and could have influenced the estimation of HyperK risk. The lack of 

stratification by KDIGO AKI stages represents an important limitation, as this 

classification is closely related to disease severity and the initiation KRT. The 

limited inclusion of biomarkers, while the manuscript emphasizes using routinely 

available variables, the exclusion of novel or emerging biomarkers (e.g., NGAL, 

TIMP-2 × IGFBP7, cystatin C) may reduce comparative predictive precision relative 

to more sophisticated models. Stratified analyses by CKD stage were descriptive 

and underpowered, limiting our ability to draw definitive conclusions regarding 

differential HyperK risk across CKD stages. The imbalanced outcome frequencies 

(e.g., low mortality rate), which may affect the reliability and calibration of those 

specific models.  

This study possesses strengths. Clinically, the predictive nomograms were 

developed using routinely available variables at the time of nephrology 

consultation, allowing for immediate applicability in real-world settings without the 

need for specialized biomarkers or advanced technologies. Unlike previous models 

focused solely on mortality or dialysis initiation, our study addresses a broader 

spectrum of clinically relevant outcomes, including HyperK, KRT, and MAKE. 

Additionally, the stratified analysis by sex accounts for potential biological and 

clinical differences between male and female patients, enhancing the precision of 

risk prediction. The study also employed robust internal validation through a 

comprehensive set of performance metrics, including accuracy, predictive values, 

F1 score, and confusion matrices.  

Conclusion 
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We developed and internally validated clinically applicable nomograms for 

predicting HyperK, the need for KRT, and MAKE in patients with AKI. By relying 

solely on readily available clinical and laboratory data at the time of nephrology 

consultation, these models offer accurate, timely, and personalized risk 

stratification. Their strong discriminative performance and ease of use support their 

potential integration into routine clinical practice to enhance decision-making and 

improve outcomes in AKI management. 
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Figure description 

 

Figure 1. Flow chart of the cohort. 
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Figure 2. ROC curve predict HyperK in all patients. 
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Figure 3. Nomogram predicting HyperK. 
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Table 1. Baseline demographic and clinical characteristics of patients with AKI 
according to the development of HyperK. 
 
Variable  Total (N = 

753)  
HyperK (N = 
182)  

Non-HyperK (N 
= 571)  

P  

Demographics, 
comorbilities and 
treatments 

    

Age, years 53.0 (39.0, 
66.0)  

53.5 (41.2, 
66.0)  

53.0 (38.5, 66.0)  0.467  

Male 292 (38.8)  71 (39.0)  221 (38.7)  1.000  
DM 237 (31.5)  58 (31.9)  179 (31.3)  0.927  
HTN 252 (33.5)  57 (31.3)  195 (34.2)  0.528  
CHF 72 ( 9.6)  18 ( 9.9)  54 ( 9.5)  0.885  
CKD  148 (19.7)  24 (13.2)  124 (21.7)  0.013  
CVE 35 ( 4.6)  5 ( 2.7)  30 ( 5.3)  0.224  
BMI  25.2 (22.8, 

28.7)  
26.1 (23.4, 
29.4)  

25.0 (22.6, 28.4)  0.029  

Antihipertensives  222 (29.5)  51 (28.0)  171 (29.9)  0.642  
Diuretics 258 (34.3)  69 (37.9)  189 (33.1)  0.244  
AKI etiology and 
acute complications  

    

Shock  129 (17.1)  48 (26.4)  81 (14.2)  0.000  
Vasopressors  213 (28.3)  73 (40.1)  140 (24.5)  0.000  
Sepsis 370 (49.1)  85 (46.7)  285 (49.9)  0.496  
Hypovolemia 163 (21.6)  40 (22.0)  123 (21.5)  0.918  
Cardiorenal  101 (13.4)  21 (11.5)  80 (14.0)  0.454  
Nephrotoxic  25 ( 3.3)  7 ( 3.8)  18 ( 3.2)  0.638  
Urinary Obstruction 94 (12.5)  27 (14.8)  67 (11.7)  0.303  
Metabolic acidosis 73 ( 9.7)  29 (15.9)  44 ( 7.7)  0.002  
Fluid overload 87 (11.6)  30 (16.5)  57 (10.0)  0.023  
Uremia  97 (12.9)  31 (17.0)  66 (11.6)  0.058  
Biochemical 
variables  

    

Hemoglobin , g/L 9.2 (7.6, 
10.9)  

9.5 (7.8, 12.3)  9.2 (7.6, 10.8)  0.090  

Platelets, U/L 191 (120, 
290)  

176 (107, 286)  192 (122, 290)  0.440  

Leucocytes , U/L 12 (8, 17)  12 (8, 18)  12 (8, 17)  0.657  
Glucose , mg/dL 112.0 (86.0, 

146.0)  
115.4 (88.2, 
165.5)  

110.0 (85.5, 
142.0)  

0.127  

Urea mg/dL 143.0 (88.9, 
199.3)  

137.0 (83.2, 
198.7)  

145.0 (90.7, 
199.2)  

0.369  
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Creatinine, mg/dL 3.5 (2.2, 
5.5)  

3.3 (2.2, 5.1)  3.6 (2.2, 5.6)  0.213  

Sodium, Meq/L 136.0 
(131.0, 
141.0)  

135.4 (131.0, 
140.0)  

136.0 (131.0, 
141.0)  

0.768  

Potassium, Meq/L 4.4 (3.8, 
4.9)  

4.7 (4.3, 5.1)  4.2 (3.7, 4.7)  0.000  

Chloride, Meq/L 103.0 (97.8, 
108.0)  

103.0 (98.0, 
108.0)  

103.0 (97.6, 
108.0)  

0.967  

Calcium , mg/dL 7.8 (7.3, 
8.3)  

7.8 (7.3, 8.4)  7.8 (7.3, 8.3)  0.231  

Phosphorus , mg/dL 5.3 (3.9, 
6.6)  

5.3 (3.8, 6.7)  5.2 (3.9, 6.6)  0.974  

Categorical variables are expressed as number and percentage (n, %), and 
continuous variables as median and interquartile range (IQR) or mean ± standard 
deviation (SD), as appropriate. BMI, body mass index; CHF, chronic heart failure; 
CKD, chronic kidney disease; CVE, cerebrovascular event; DM, diabetes mellitus; 
HTN, hypertension; IQR, interquartile range; MAP, mean arterial pressure; SD, 
standard deviation. 
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Table 2 Factors associated with HyperK  in AKI patients by univariable and multivariable 
analyses.  

 
 
 

BMI, body mass index; CKD, chronic kidney disease; NSAID, Non steroidal Anti 
Inflammatory Drug. 

  

Variables Univariate logistic regression Multivariate logistic regression  
 OR (95% IC)  P  OR (95% IC)  P  
CKD 0.54 (0.33, 0.86)  0.013  0.60 (0.34, 1.05)  0.077  
NSAID 0.70 (0.46, 1.05)  0.093  0.68 (0.42, 1.10)  0.118  
Diuretics  1.23 (0.87, 1.74)  0.234  1.35 (0.89, 2.05)  0.157  
Vasoppresor  2.06 (1.44, 2.93)  0.000  1.62 (1.00, 2.62)  0.050  
Shock 2.16 (1.43, 3.24)  0.000  1.72 (1.00, 2.96)  0.050  
Urinary 
Obstruction  

1.31 (0.79, 2.10)  0.271  1.86 (1.04, 3.36)  0.036  

Metabolic 
acidosis  

2.27 (1.36, 3.73)  0.001  1.44 (0.78, 2.71)  0.245  

Fluid overload  1.78 (1.09, 2.85) 0.018  
Uremia  1.57 (0.97, 2.47)  0.056  1.50 (0.87, 2.60)  0.139  
BMI 1.02 (0.99, 1.05)  0.089  0.69 (0.46, 1.04)  0.077  
Weight 1.00 (0.99, 1.01)  0.065  
Hemoglobin 1.03 (0.99, 1.09)  0.114  0.59 (0.35, 0.97)  0.040  
Potassium 2.20 (1.68, 2.90)  0.000  2.44 (1.42, 4.19)  0.001  
Constant  0.36 (0.19, 0.64)  0.001  
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