EDITORIAL

Cell biology of Diabetic Nephropathy

E. N. Wardle, MD, MRCP Oxford. Reino Unido

Introduction

40 % of patients with juvenile insulin dependent diabetes mellitus (IDDM) develop nephropathy within 10-20 years of diagnosis ¹, 20 % of middle aged, noninsulin dependent diabetes mellitus (NIDM) patients are found to have nephropathy only 5-10 years after the initial diagnosis². Generally the patients with early proteinuria are those who have had poor glucose control ³ a slightly higher blood pressure (135: 85 mm Hg) and more marked retinopathy. They are those who soon have an increase of their GFR above normal and so they have hyperfiltration. They tend also to have a higher cholesterol, a higher LDL and VLDL, and elevation of their plasma fibrinogen ⁴. After 5-10 years of diabetes we might detect microalbuminuria, which means an albumin excretion rate of 20-200 micrograms/minute in an overnight urine, or 30-300 mg/24 hrs in a complete collection. Then after another 5-10 years they will develop albumin stick positive proteinuria. The clinical sequence of the development of diabetic nephropathy was described in detail by Castiglioni and Savazzi ⁵.

When biopsies are obtained from diabetic patients, the changes that are typical are 'the hyalinosis of the afferent and efferent arterioles of the glomeruli², the thickening of the basement membranes of the glomerular capillaries ⁶, and³ the increased volume of mesangial cells leading to an increase in volume of glomeruli. Once the expansion of the mesangium is more than 37 % of the glomerular volume, there is pressure on the capillaries with loss of filtration surface⁷, so that thereafter there is functional renal impairment. Ultimately there is closure and obsolence of glomeruli, called glomerulosclerosis. Those patients with severe glomerular lesions have hypertension and reduced creatinine clearance, and there is renal interstitial fibrosis. There is evidente that this fibrosis develops concurrently with the increased fractional mesangial volume⁸.

Clomerular Capillary Hipertension and Hyperfiltration

In rats that are made diabetic by means of streptorotocin and kept alive by injections of insulin there is a decreased resistance of the afferent arterioles, so that there will be increased pressure in the glomerular capillaries and there is hyper-filtration ⁹, which is determined by the increase in plasma flow. The factors that determine hyperfiltration have been discussed by Bank ¹⁰. Hyperglycaemia is a first consideration ¹¹ but so is a high protein intake ¹². A very high glucose (20 mM) inhibits cytosolic calcium signaling in cultured mesanaial or vascular smooth muscle cells ^{11b}.Hence there is vasodilatation. Sodium intake is also relevant. During hyperglycaemia induced osmotic flow, there is increased reabsorption of sodium in the proximal tubules ¹³. In subjects who are using insulin, insulin is known to increase sodium reabsorption in the tubules ^{14.} The pituitary of diabetic patients secretes large pulses of growth hormone, possibly as a result of raised glucose in the CSF, and arowth hormone increases GFR and renal blood flow ¹⁵ by the intermediary of insulin growth factor IGF-1¹⁶, Inany case there is increased formation of nitric oxide vasodilator in the afferent arterioles in diabetes ¹⁷. The hyperglycaemia also results in production of vasodilator prostaglandins in the afferent artérioles¹⁸. This production of prostaglandins seems to depend on polyol formation, because it is arrested when an aldose reductase inhibitor is used 19 Hyperglycaemia determines also an increased production of thromboxanes at the vascular pole of diabetic kidneys and thus an increased tone in the efferent arterioles ¹⁰. Indeed one knows that urinary thromboxane excretion is increased ¹⁰, and that proteinuria is ameliorated in animals given thromboxane synthetase inhibitor ²⁰ Yet another consideration is that hyperglycaemia leads to formation of excess diacylglycerol withi cells and thus there is activation

of protein kinase C. Excess protein kinase C is known to mediate vascular permeability of the endothelium of blood vessels ²¹, In fact it mediates down-regulation of thromboxane receptors in diabetic alomeruli and mesangial cells²², Angiotensin II receptors are likewise downregulated. In all this will explain the predominant vasodilatation in the afferent arterioles and so the hyperfiltration. The data in humans indicates some relation between early hyperfiltration and the development of diabetic renal disease. Thus in one study of children a GFR in excess of 125 ml/min 1.73 m² conferred a predictive value for nephropathy of 53 % ²³. Yet one must note that in that study half of the hyperfiltering subjects did not develop nephropathy during the period of follow-up. Thus hyperfiltration is not a highly sensitive predictive parameter. NIDDM patients also show hyperfiltration ²⁴. Itis common in Pima Indians²⁵.

It has been suggested that the patients who progress to diabetic nephropathy are those with a family predisposition to hypertension ²⁶. Hypertension will raise intracapillary pressures and worsen proteinuria. In some populations genetic susceptibility to essential hypertension can be linked to increased erythrocyte sodium-lithium counter-transport. There is a similar link with diabetic nephropathy ²⁷. However one must emphasize that this does not apply in all populations that have been studied ²⁸.

Hypertrophy of the Kidneys

Soon after the onset of diabetes the size of the kidneys increase. All the glomeruli and their nephrons hypertrophy²⁹. In the rat this hypertrophy precedes the increase of GFR ³⁰. The finding of increased protein kinase C activity in the glomeruli is relevant to growth ³¹. Both hyperglycaemia and the growth factors work via pkC activation. It has been shown that the action of EGF, epidermal growth factor, works through the intermediary of increased protein kinase C activity ³².EGF is produced in the distal tubules and ascending loops of Henle³³, There is increased excretion of EGF in the urine of streptozotocin diabetic rats ³⁴, The effects of growth hormone are known to be mediated by IGF-1 and this is anabolic and it is involved in hypertrophy of diabetic kidneys ³⁵. In short term studies the somatostatin analogue, octreotide, which suppresses growth hormone secretion, stops the early renal hypertrophy of diabetic rats ³⁶. Yet in the longterm it does not ³⁷. Hyperalycaemia stimulates production of TGFbeta in cultured proximal tubules ³⁸.It is therefore possible that it could contribute to hypertrophy of the tubules, albeit how TGFbeta behaves depends on the phase of development.

There has to be a metabolic component to the hypertrophy that stems from the hyperglycaemia. Thus it has now been demonstrated that in the kidneys of diabetic rats there is an increase of glucosylceramide, a glycosphingolipid precursor. Furthermore an inhibitor of glucosyl-ceramide prevents the renal hypertrophy ³⁹.

Vascular Changes in Diabetes

Hyalinosis of blood vessels is recognised as an adverse feature. It means that the vessel walls are permeable to molecules as large as fibrinogen. It implies that glomerulosclerosis will develop ⁴⁰. When it occurs leakiness of the postglomerular peritubular capillaries leads to protein accumulation in the interstitium of the kidneys ⁴¹ That will lead to renal interstitial fibrosis. The process is probably facilitated by iron that comes from transferrin in the urine of diabetics ⁴².

What causes increased endothelial cell permeability in diabetes? Firstly metabolism of glucose to diacylalycerol that mediates the formation of excess protein kinase C has been mentioned ²¹. Secondly a role for conversion of glucose to sorbito1 via aldose reductase enzyme is probable, because the inhibitor sorbinil can reduce vascular permeability ⁴³. Thirdly there is a definite role for lipid peroxides, which arise when there is free radical formation linked to nonenzymic glucosylation of proteins ⁴⁴⁻⁴⁵. The freeradicals arise from auto-oxidation reactions of sugars and sugar adducts to proteins and by auto-oxidation of unsaturated lipids adjacent to altered membrane proteins. Monocytes of diabetics often produce superoxide anions and thus hydrogen peroxide ⁴⁶. Polymorphonuclear leucocytes in serum that is high in cholesterol also form superoxide anions ⁴⁷. It is usual for the low density lipoproteins of diabetics to become oxidised ⁴⁸. Apart from that one can gauge free radical activity in diabetic rats by their expiration of pentane ⁴⁹, and one canmeasure plasma lipid peroxides and lipid peroxidation of kidneys in diabetic rats 50,

In human studies several groups have now related lipid peroxides in plasma ⁵¹ (measured by thethiobarbituric acid reaction) to endothelial cell damage as shown by a raised plasma von Willebrand factor. The patients with raised plasma malonyldialdehyde (indicative of lipid peroxides) and raised plasma von Willebrand factor were also those who had microalbuminuria ⁵²⁻⁵⁴. Furthermore patients with raised plasma MDA were those with tubular damage as shown by increased excretion of NAG, N-acetyl-glucosaminidase, in their urine ⁵⁴. When sought in the correct manner, marked evidence of tubular damage will be negative charges of their sulphate groupings on enfound in many diabetics ^{55,56}. dothelial cells, and in the basement membranes of

Oxidised LDL has altered properties ⁵⁷ that are pertinent to atherogenesis ⁵⁸. Oxidised LDL is chemotactic for monocytes and it is taken up by macrophages in arterial walls to cause their cholesterol enrichment and foam cell formation. Oxidised LDL causes platelet aggregation. It stops the action of nitric oxide and so it can promote vasoconstriction in small arterioles. Oxidised LDL can be cytotoxic for endothelial cells. In lesser doses it causes the expression of «tissue factor» thromboplastin on endothelial cells ⁵⁹, so that there is a thrombotic tendency in small arterioles. It also prevents activation of protein C and so it thwarts protective fibrinolysis. The severe atheroma that many diabetics develop has implications for kidney function. For example platelet aggregates forming in the aorta will be swept into the glomeruli to cause lesions like focal segmental sclerosis ⁶⁰. Also many diabetics do have renal artery stenoses. Recognition of this fact is necessary before the prescription of ACE inhibitors.

Non-enzymatic glucosylation of proteins produces ACEP, advanced glycosylation end-products ⁴⁵. They accumulate in the tissues of diabetics ⁶¹ and will undoubtedly play a role in nephropathy. Mesangial cells express AGEP receptors ⁶² and when stimulated by AGEP they form basement membrane proteins ⁶³. AGEP have oxidising potential ⁶⁴, and when they accumulate in blood, as they do in terminal renal failu-

⁶⁵ they encourage procoagulant change on the endothelial cells ⁶⁶, both directly and via release of cytokines like II-1 and TNFa ⁶⁷.

Glycosaminoglycans and Collagen

There is poor synthesis of heparan sulphate proteoglycans by the renal glomeruli in diabetes mellitus ⁶⁸. There is a genetic factor involved in different strains of rats ⁷¹, and it has also been suggested that the varying liability to diabetic vascular disease in humans 69 might also depend on some factor like this. Hyperglycaemia also stops proteoglycan synthesis by mesangial cells ⁷⁰. When there is poor diabetic control there is inhibition of the N-acetyl heparan deacetylase enzyme that is required for heparan sulphate proteoglycan synthesis. Furthermore there is loss of heparan sulphates in the urine at the onset of diabetes in rats ⁷². When biopsies from human diabetic nephropathy were examined, a marked reduction in reactivity to anti-heparan sulphate proteoglycan antibodies was observed, but one has to acknowledge that these were cases of quite advanced disease ⁷³.

The importance of the heparan sulphates is that the

negative charges of their sulphate groupings on endothelial cells, and in the basement membranes of the glomeruli and on the mesangial cells, repel negatively charged albumin molecules, so that their filtration is prevented. So it would seem that loss of heparan sulphates at such an early stage in diabetes ⁷⁴ could account for the onset of micro-albuminuria. Indeed Gambaro et al.⁷⁵ have show.n that, when streptozotocin diabetic rats are given injections of either low MW heparin or dermatan sulphate glycosaminoglycan, there was inhibition of mesangial cell expansion and thickening of the glomerular basement membranes was reduced. The heparan sulphates of the basement membrane are essential for the integrated binding of the other components like the type IV collagen and laminin.

Another factor that contributes to proteinuria must also be the poor synthesis in diabetes ⁷⁶ of the negatively charged sialoproteins that line the slit pores between the epithelial cells.

The basement membrane width expands by about 30 % during the first 5 years of diabetes and by the time of clinical nephropathy its width has doubled ⁶. Not only is there loss of negative charges ⁷³ but the closely woven structure must be disorganised, perhaps by the addition of glucoadducts in the process of non-enzymic glucosylation ^{61,77-79}, surely by the effect of ACE products causing collagen browning ⁸⁰, and surely as a result of the loss of heparan sulphate proteoglycans ⁸¹. When in an experimental situation aminoguanidine is used to decrease AGE products ⁸², the proteinuria is reduced ⁸³.

A high ambient glucose (30 mM) increases the synthesis of type IV collagen by cultured endothelial, mesangial and epithelial cells ^{84-85.} Undoubtedly the ability of high glucose to drive protein kinase C may explain this ⁸⁶. However one should also be aware that lipid peroxidation enhances the synthesis of type I V collagen Also it can be shown in vivo that thromboxanes play a role, because when thromboxane synthase inhibitors are used basement membrane thickening and mesangial matrix expansion is reduced ^{87,88.} The basic fact that high ambient glucose causes increases messenger RNA for type IV collagen^{89,90} has now been verified by many groups. Likewise proximal tubules that are exposed to glucose will synthesise type IV collagen of tubular basement membranes ⁹¹, It is reported that sorbinil prevents the biosynthesis ⁹¹.

Clearly the altered structure of the GBM explains the albuminuria and the loss of charge selectivity that can now be measured by study of the clearance of IgG/IgG4 ^{92,93}. As can be shown by dextran clearances, there is initially no increase of pore size at a time when there is substantial loss of albumin and IgG, but pore size is increased later. It is relevant to note that glycated albumin readily leaks through the glomeruli and it is not reabsorbed by the proximal tubules ⁹⁴. In any case,there is often proximal tubule dysfunction as shown by lysozymuria ⁹⁵.

The Altered Mesangia of Glomeruli of Diabetics

The feature that is so typical of diabetes is the early mesangial cell expansion that is followed years later by mesangial sclerosis 5,7. Thus the picture differs from the glomerulonephritides in which one often expects to see mesangial cell proliferation that is caused by growth factors ⁹⁶. By now one can list various experimental observations that explain why the mesangial cells do not proliferate. 1) A high ambient glucose (20 mM) inhibits mesangial cell proliferation, although it does promote fibronectin synthesis ⁹⁷. 2) Although a high glucose increases protein kinase C in mesangial cells 98 and thus formation of extracellular matrix fibronectin, laminin and type IV collagen, high glucose also inhibits cytosolic calcium signa-Iling ⁹⁹. Hence the cells will tend to be relaxed and spread out rather than contractile. 3) Non-enzymatic glucosylation and formation of ACE products causes mesangial expansion and inhibition of mesangial cell proliferation 4) On account of the aldose reductase content of the mesangia, exposure to high glucose will result in formation of polyols ¹⁰¹ and there will be a reduction of the myoinositol of the cells 102. 5) When there is a high glucose, prostaglandin production by mesangial Cells is increased ¹⁰³ Prostaglandins inhibit cell oroliferation ⁹⁶. Potential high glucose induced mesangial cell proliferation is inhibced also by transforming growth factor beta ¹⁰⁴. 6) Highglucose can inhibit the cell proliferative effect of ICF-1¹⁰⁵.7) Low density lipoproteins at a concentration of only 10 g/ml stimulate proliferation of mesangial cells and yet at a level of 100-500 g/ml, as would be the case in any hyperlipidaemia, there is inhibition ¹⁰⁶.Such LDL will stimulate superoxide production by mesangial cells and thus may become oxidised ¹⁰⁷. 8) Oxidised LDL reduces release of growth factors from macrophage like cells ¹⁰⁸. Oxidised LDL bind very well to mesangial cells and inhibit their proliferation at concentrations as low as 10-25 g/ml ¹⁰⁹.

Although these observations make good biochemical sense, they are mainly based on in vitro studies. When RNA messengers are looked at in the early stages of diabetes in Sprague-Dawley rats those for INFalpha, basic fibroblast growth factor and PDGF-B chain and for transforming growth factor beta are increased ¹¹⁰. Indeed their levels are reduced by insulin therapy ¹¹⁰. Nevertheless rats are not as hyperlipaemic as man might be. We know from histology that glomerulosclerosis (mesangial sclerosis) will ultimately develop and that follows increasing deposition of fibronectin and type IV collagen. High glucose leads to loss of proteogly-cans ¹¹¹ and it promotes formation of fibronectin and collagen ⁹⁷⁻⁹⁸, albeit one set of studies showed that over a long time high glucose suppresses collagen production ¹¹¹. That might be due to ascorbic acid depletion, since that is well recognised in diabetes.

Certainly it seems that hyperlipidaemia will mediate glomerulosclerosis, as in other situations ¹¹². Immunohistochemical studies of the localisation of apolipoproteins in glomeruli has shown that fixation of apolipoprotein B with apoE gives rise to more glomerulosclerosis and interstitial scarring ¹¹³.

What more does one need to know? Since mice transgenic for bovine growth hormone¹¹⁴ develop mesangial cell proliferation by 4 weeks, mesangial sclerosis by 20 weeks and glomerulosclerosis by 36 weeks, what are the mediators of the response? Presumably PDGF autocrine production in glomeruli is involved at the early stage ¹¹⁰. Since TGFbeta is the mediator of glomerulosclerosis in most situations, one has to assume that this is also the case in diabetic nephropathy ¹¹⁰. Indeed it does seem that high glucose stimulates autocrine production of TGFbeta by mesangial cells ¹⁰⁴.

Furthermore the release of TGFbeta stops mesangial cell proliferation but increases the deposition of mesangial matrix ¹¹⁵.

Final Synopsis

By now it has been shown in rats with diabetic nephropathy and in humans that TGFbeta values are elevated in the glomeruli ¹¹⁵. Thisis a clear indication that TGFbeta mediates glomerulosclerosis.

Secondly Cohen and Ziyadeh¹¹⁷ have examined the effects of glycosylated proteins on glomerular mesangial cells. They have shown that glycosylated proteins (i) stop proliferation of mesangial cells, and (ii) stimulate the mesangial cells to transcribe the genes for type IV collagen. So growth of mesangial cells is inhibited, as was recorded by Crowley et al.¹⁰⁰, and type IV collagen production occurs in diabetic glomeruli. One should note that when glycated proteins are taken up by mesangial cells, there is intracellular production of hydrogen peroxide 64,118 We do know that lipid peroxidation is a stimulus to collagen production 66, Infact Cohen and Ziyadeh 117 used glycated serum proteins that had no cross-links and showed no AGE fluorescente, whereas Crowley et al. ¹⁰⁰ specifically used fluorescent cross-linked AGE products. Thus either product can influente the genes for collagen.

Thirdly there is more information on the contraversial topic of whether or not nitric oxide production by endothelium is increased o decreased in diabetes. The answer is that NO production can be increased or decreased depending on the vascular bed. Nitric oxide production is increased in the afferent arteriales of diabetic alomeruli and thus this is a factor that explains vasodilatation and hyperfiltration. On the other hand it has been shown that carbamvlcholine induced cyclic GMP is decreased within isolated diabetic glomeruli in parallel with hyperalycaemia induced increases of protein kinase C¹¹⁹. Furthermore in that situation thromboxane formation is increased⁸⁸ and this is another factor ¹²⁰ that contributes to production of glomerular extrace-Ilular matrix proteins.

Hence hyperglycaemia causes non-enzymatic glycosylation of proteins and they reduce mesangial cell proliferation but cause mesangial expansion and type IV collagen production. Also hyperglycaemia induced protein kinase C, and hence thromboxanes, cause matrix deposition.

References

- Anderson AR, Christiansen JS, Anderson JK, Kreiner S and Deckert T: Diabetic nephropathy in type I diabetes: an epidemiological study. *Diabetologia* 25:496-451, 1983.
- Tung P and Levin SR: Nephropathy in non-insulin dependent diabetes mellitus. *AmerJ Med* 85 (suppl 5A):1-9, 1988.
- Feld-Rasmussen B, Mathieson ER, Jensen T, Lauritzen T and Deckert T: Effect of improved metabolic control on loss of kidney function in type I diabetic patients: an update of the Steno studies. *Diabetologia* 34:164-70, 1991.
- Wardle EN, Piercy JS and Anderson J: Chemical parameters of diabetic vascular disease. *Postgrad Med J* 49:1-9, 1973.
- Castiglioni A and Savazzi GM: Physiopathology and clinical aspects of diabetic nephropathy. *Nephron* 50:151-1463, 1988.
- Walker JD, Close CF, Jones SL, Raftery M, Keen H et al: Glomerular structure in type I insulin dependent diabetic patients with normo and microalbuminuria. *Kidney Int* 41 :741-8, 1992.
- Steffes MW, Osterby R, Chavers B and Mauer, SM: Mesangial expansion as a central mechanism for loss of kidney function in diabetic patients. *Diabetes* 38:1077-81, 1989.
- Lane PH, Steffes MW, Fioretto P and Mauer SM: Renal interstitial expansion in insulin dependent diabetes mellitus. *Kidney Int* 43:661-7, 1993.
- 9. Hasimoto Y, Ideura T, Yoshimura A and Koshikawa S: Autoregulation of renal blood flow in streptozotocin induced diabetic rats. *Diabetes* 38:1109-1113, 1989.
- Bank N: Mechanisms of diabetic hyperfiltration. *Kidney Int* 40:792-807 1991.
- 11. Wiseman J, Mangili R, Alberetto M and Viberti GC: Glomerular response mechanisms to glycaemic changes in insulin dependent diabetes. *Kidney Int* 31:1012-28, 1987.
- 11b. Mene P, Publiese G, Pricci F, DiMario U, Cinotti GA and

Pugliese F: High glucose inhibits citosolic calcium signaling in cultured ras mensagial cells.

- Wiseman MJ, Bugnetti E, Dodds R, Keen H and Viberti GC: Changes in renal function in response to protein restricted diet in type I diabetic patients. *Diabetes* 30:154-9, 1987.
- Woods LL, Mizelle HL and Hall JE: Control of renal hemodynamics in hyperglycemia: possible role of tubuloglomerular feedback. *AmerJ Physiology* 257:F65-F73, 1987.
- 14 Skott P, Hother-Nielsen 0 and Brun NE: Effects of insulin on kidney function and sodium excretion in diabetic subjects. *Diabetologia* 32:694-699, 1989.
- 15 Töushoff B, Nowack R, Kurilenko S, Blum WF, Seyberth HW, Mehls 0 and Ritz E: Growth hormone induced glomerular hyperfiltration is dependent on vasodilating prostanoids. Amer J Kidney Dis 21 :145-151, 1993.
- Hirschberg RR and Kople JD: Increase in renal blood flow and GFR during growth hormone treatment may be mediated by insulin growth factor 1. *Amer J Nephrology* 8:249-253, 1988.
- Bank N and Aynedjian HS: Role of endothelium dependent relaxing factor (nitric oxide) in diabetic renal hyperfiltration. *Kidney Int* 43:1306-12, 1993.
- Craven PA, Caines MA and DeRubertis FR: Sequential alterations in glomerular prostaglandin and thromboxane synthesis in diabetic rats: relation to hyperfiltration of early diabetes. *Metabolism* 36:95-103, 1987.
- 19 Craven PA and DeRubertis FR: Sorhinil suppresses glomerular prostaglandin production and reduces hyperfiltration in the streptozotocin diabetic rat. *Clin Res* 36:517a, 1988.
- 20 Craven PA and DeRubertis FR: Suppression of urinary albumin excretion in diabetic rats by 4 (imidazolyl) acetophenone, a selective inhibitor of thromboxane synthesis. *J Lab Clin Med* 116:469-478, 1990.
- Lynch JJ, Ferro TJ, Blumenstock FA, Brockenauer AM and Malik AB: Increased endothelial albumin permeability mediated by protein kinase C activation. *J Clin Invest* 85:1991-1998, 1990.
- Studer RK, Craven PA and DeRubertis FR: Activation of protein kinase C reduces thromboxane receptors in glomeruli and mesangial cells. *Kidney Int* 44:58-64, 1993.
- Rudberg S, Persson B and Dahlquist G: Increased glomerular filtration rate as a predictor of diabetic nephropathy. *Kidney Int* 41:822-828, 1992.
- Vora JP, Dolben J, Dean JJ, Thomas D, Williams JD et al: Renal hemodynamics in newly presenting non-insulin dependent diabetes mellitus. *Kidney Int* 41:829-35, 1992.
- Myers BD, Nelson GR, Williams GW, Bennett PH, Hardy SA et al: Glomerular function in Pima Indians with non-insulin dependent diabetes mellitus of recent onset. J Clin Invest 88:524-530, 1991.
- Krolewski AS, Canessa M, Warran JH, Laffel L, Christlieb AR et al: Predisposition to hypertension and susceptibility to renal disease in insulin dependent diabetes mellitus. New England J Med 318:140-5, 1988.
- Trevisan R, Nosadini R, Fioretto P, Semplicini A, Donadon V et al: Clustering of risk factors in hypertensive insulin dependent diabetes with high sodium-lithium countertransport. *Kidney Int* 41:855-861, 1992.
- Jensen JS, Mathiesen ER, Norgaard K, Hommel E, Borch-Johnsen KI et al: Increased blood pressure and sodium/lithium countertransport are not inherited in diabetic nephropathy. *Diabetologia* 33:619-24, 1990.
- Seyer-Hansen K: Renal hypertrophy in experimental diabetes mellitus. *Kidney Int* 23:643-646, 1983.
- Cortes P, Dumler F, Goldman J and Levin NW: Relation between renal function and metabolic alterations in early streptozotocin induced diabetes in rats. *Diabetes* 36:80-87, 1987.

- Craven PA and DeRubertis FR: Protein kinase C is activated in the glomeruli of streptozotocin diabetic rats. J Clin Invest, 83:1667-75, 1989.
- Albert i P, Bardella L and Cornolli R: Ribosomal protein S6 kinase and protein kinase C activation by EGF after renal ischaemia. *Nephron* 64:296-302, 1993.
- Hammerman MR, O'Shea M and Miller SB: Role of growth factors in regulation of renal growth. Ann Review Physiol 55:305-21, 1993.
- Guh JY, Lai YH, Shin SJ, Chuang LY and Tsai JH: Epidermal growth factor in renal hypertrophy in streptozotocin diabetic rats. *Nephron* 59:641-7, 1991.
- 35. Muchaneta-Kubara EC and El Nahas AM: Role of insulin growth factor I in expemental diabetic nephropathy. *Nephrol Dial Transplant* 7(7):663 abst., 1992.
- Flyvberg A, Frystyk J, Thorlacius-Ussing O and Orskov H: Somatostatin analogue administration prevents increase in kidney somatomedicin C and initial renal growth in diabetic and uninephrectomised rats. *Diabetologia* 32:261-5, 1989.
- Muntzel M, Hannedouche T, Niesor R, Nole LH, Souberbielle JC, Lacour B and Drüeke T: Long term effects of a somatostatin analogue on renal haemodynamics and hypertrophy in diabetic rats. *Clinical Science* 83:575-581, 1992.
- Rocco MV, Chen Y, Goldfarb S and Ziyadeh FN: Elevated glucose stimulates TGFbeta gene expression and bioactivity in proximal tubules. *Kidney Int* 41 :107-114, 1992.
- Zador IZ, Deshmukh GD, Kunkel R, Johnson K, Radin NS and Shayman JA: A role for glycosphingolipid accumulation in the renal hypertrophy of streptozotocin induced diabetes mellitus. J Clin Invest 91:797-803, 1993.
- Bader R, Bader H and Grund KE: Structure and function of the kidney in diabetic glomerulosclerosis. Correlations between morphologic and functional parameters. *Pathol Res Pract* 167:204-216, 1980.
- Pinter GG and Atkins JL: Role of post-glomerular microvessels in the pathophysiology of diabetes mellitus. *Diabetes* 40:791-795, 1991.
- Howard RL, Buddington B and'Alfrey C: Urinary albumin, transferrin and iron excretion in diabetic patients. *Kidney /nt* 40:923-6, 1991.
- Cunha-Vaz JG, Mota CC, Leite EC, Abreu JR and Ruas MA: Effects of sorbinil on the blood retinal barrier in early diabetic retinopathy. *Diabetes* 35:574-8, 1986.
- Baynes JW: Role of oxidative stress in development of complications in diabetes. *Diabetes* 40: 405-413, 1991.
- 45. Bucala R and Cerami A: Advanced glycosylation: chemistry, biology and implications for diabetes and ageing. Adv Pharmacology 23:1-34, 1992.
- Noritake M, Katsura Y, Shinomiya N, Kanatani M and Uwabe Y: Intracellular hydrogen peroxide production by peripheral phagocytes from diabetic patients. *Clin Exp Immuno/ogy* 88:269-274, 1992.
- 47. Ludwig P, Hunninghake DG and Hoidal JR: Increased leucocyte oxidative metabolism in hyperlipoproteinaemia. *Lancet ii:348-50, 1987.*
- Lyons TJ: Oxidised low density lipoproteins: a role in the pathogenesis of atherosclerosis in diabetes. *Diabetic Medicine* 8:41 1-9, 1991.
- 49. Pitkanen OM, Martin JM, Hallman M, Akerblom HK, Sariola H and Andersson S: Free radical activity during development of diabetes in the rat. *Life Science X*):335-9, 1992.
- 50. Tomino Y, Wang LN, Fukui M, Yyaguchi Y and Koide H: G lomeru lar nonenzymatic glycosylation and | ipid peroxide are increased in the early phase of streptozotocin induced diabetic rats prior to histologic changes. *Nephron* 59:632-636, 1991.
- 51. Jennings P, McLaren M, Scott NA, Saniabadi AR and Belch J: The relationship of oxidative stress to thrombotic tendency in

type | diabetic patients with retinopathy. Diabetic Medicine 8:860-5, 1991.

- 52. Collier A, Rumley A, Rumley AG et al: Free radical activity and hemostatic factors in NIDDM patients with and without microalbuminuria. *Diabetes* 41:909-913, 1992.
- 53. Stehouwer CDA, Nauta J, Zeldenrust GC, Hackeng W, Donker AJM and Ottolander GJ: Urinary albumin excretion, cardiovascular disease and endothelial dysfunction in noninsulin dependent diabetes mellitus. *Lancet* 340:319-23, 1992.
- 54. Yaqoob M, Patrick AW and McLelland P: Oxidant injury and tubular damage precedes albuminuria in diabetic nephropathy. Nephrol Dial Transplant 7(7):698, 1992.
- Ikenaga Hi Swukl H. M-m N I Itoh H and Saruta T: Enzymuria in non-insulin dependent diabetic patients: signs of tubular dysfunction. *Clinical Science 84:469-475*, 1993.
- Catalano C, Winocour PH, Gillespie S, Gibb | and Alberti K: Effect of posture and acute glycaemic control on the excretion of retinol binding protein in normoalbuminuric insulin dependent diabetic patients. *Clinical Science* 84:461-7, 1993.
- 57. Esterbauer H, Gebicki J, Publ H and Jurgens G: The role of lipid peroxidation and antioxidants in oxidative modification of LDL. *Free Radica/ Biol Med* 13:341-390, 1992.
- Steinberg D, Parthasarathy D, Carew TE et al: Modifications of LDL that increase its atherogenicity. New Engl Med 320:915-923, 1989.
- Weis JR, Pitas RE, Wilson BD and Rodgers GM: Oxidised LDL increases cultured human endothelial cell tissue factor activity and reduces protein C activation. *FASER / 5:2459-63.* 1991.
- 60. Wardle EN: Diabetic nephropathy. Nephron 45:177-181, 1987.
- Brownlee M: Glycosylation products as toxic mediators of diabetic complications. *Annual Review* Med 42:159-66, 1991.
- Skolnik EY, Yang Z, Makita Z, Radoff S, Kistein M et al: Human and rat mesangial cell receptors for glucose modified proteins. J *Experimental Medicine* 174:931-g, 1991.
- Doi T, Vlassara H, Kirstein M, Yamada Y, Striker GE et al: Receptor specific increase in extracellular matrix production in mouse mesangial cells by advanced glycosylation end products is mediated by PDGF. *Proc Natl Atad Sci 89:2873-*77, 1992.
- Monhoisse JC, Gillery P, Maquart FX and Borel JP: Production of superoxide anion by glycated proteins. Adv Exp Med Bio/ 264:551-4, 1990.
- Makita Z, Radoff S, Rayfield EJ et al: Advanced glycosylation end products in patients with diabetic nephropathy. New Engll Med 325:836-842, 1991.
- 66. Stern DM, Esposito C and Gerlach H: Endothelium and regulation of coagulation. *Diabetes Care* 14(suppl ¹):160-166, 1991.
- Hasegawa G, Nakano K, Sawada M et al: Possible role of tumor necrosis factor and interleukin 1 in the development of diabetic nephropathy. *Kidney In-t* 40:1007-12, 1991.
- Cohen MP and Surma ML: 35-sulfate incorporation into glomerular basement membrane glycosaminoglycans is decreased in experimental diabetes. *J Lab Clin Med* 98:715-722, 1981.
- Deckert T, Feldt-Rasmussen B, Burch-Johnsen K, Jensen T and Kofoed-Enevoldsen A: Albuminuria reflects widespread vascular damage. *Diabetojogia* 32:219-226, 1989.
- Mason RM, Thomas G and Davies M: Proteoglycan synthesis by human mesangial cells is depressed by hyperglycaemic glucose concentrations. *Biochem Soc Trans 20:965*, 1992.
- 71. Kofoed-Enevoldsen A and Eriksson UJ: Inhibition of N-acetyl heparan deacetylase in diabetic rats. *Diabetes* 40:1449-52, 1991.

- 72. Reddi AS: Glomerular and urinary glycosaminoglycans in diabetic rats. Clin Chim Acta 189:21 I-220, 1990.
- Makino H, Ikeda S, Haramoto T and Ota Z: Heparan sulfate proteoglycans are lost in patients with diabetic nephropathy. Nephron 61:415-21, 1992.
- 74. Reddi AS, Ramamurthi R, Miller M, Dhuper S and Laskar N: Enalapril improves albuminuria by prevent loss of heparan sulfate in diabetic rats. Biochem *Med Metab Biol45:1* 19-131,199I.
- Gambaro G, Cavazzana AO, Luzi P, Piccoli Z, Borsatti A et al: Glycosaminoglycans prevent morphological renal alterations and albuminuria in diabetic rats. *Kidney Int* 42:285-291,1992.
- 76. Cárdenas A, Schadeck C, Bernard A and Lauweys R: Depletion of sialic acid in glomeruli of uninephrectomised rats. Biochem *Med Metab Biol* 46:416-21, 1991.
- 77. Review: Non-enzymic glycosylation of proteins. *Nutrition Reviews* 47:281-2, 1989.
- LePape A, Guitton JD and Mull JP: Modification of glomerular basement membrane cross-links in experimental diabetic rats. *Biochem Biophys Res Commun* 100:1 214-21, 1981.
- Coperland KR, Yatscoff RW, Thliveris JA, Mehta A and Penner B: Non-enzymatic glycation and altered renal structure and function in the diabetic rat. *Kidney Int* 32:664-670.
- Monnier VM, Sell DR, Abdul Karim KW and Emancipator SW: Collagen browning and crosslinking are increased in chronic experimental hyperglycemia relevant to diabetes and ageing. *Diabetes* 37:867-72, 1988.
- Makino H, Yamasaki Y, Haramoto T, Shikata K, Hironska K, Ota Z and Kanware YS: Ultrastructural changes of extracellular matrices in the nephron revealed by high resolution scanning and immunoelectron microscopy. Lab *Invest* 68:491-55, 1993.
- Edelstein D and Brownlee M: Mechanistic studies of advanced glycosylation end product inhibition by aminoguanidine. *Diabetes* 41:26-g, 1992.
- Itakura M, Yoskikawa H and Bannal C: Aminoguanidine decreases urinary albumin and high MW proteins in diabetic rats. *Life Science* 49:889-897, 1991.
- 84. Danne T, Spiro MJ and Spiro RG: Effect of high glucose on type IV collagen production by cultured glomerular epithelial, endothelial and mesangial cells. *Diabetes* 42:170-7, 1993.
- Kreisberg JI: Hyperglycemia and micro-angiopathy. Direct regulation by glucose of microvascular cells. *Lab Invest* 67:416-426, 1992.
- 86. Wardle EN: Glomerulosclerosis and lipid peroxidation. Nephron 64:487, 1993.
- 87. Ledbetter S, Copeland EJ, Noonan D, Vogeli G and Hassell JR: Altered steady state messenger RNA levels of basement membrane proteins in diabetic mouse kidneys and thromboxane synthase inhibition. *Diabetes* 39:196-203, 1990.
- Craven PA, Melham M and DeRubertis FR: Thromboxane in the pathogenesis of glomerular injury in diabetes. *Kid /nt* 42:937-946, 1992.
- Cagliero E, Maiello M, Boeri D, Roy S and Lorenzi M: Increased expression of basement membrane components by human endothelial cells cultured in high glucose concentration. / Clin Invest 82:735-8, 1988.
- Ihm CG, Lee G, Nast CC, Artishevsky AA, Guillermo R et al: Early increased renal procollagen al (IV) mRNA levels in streptozotocin induced diabetes. *Ridney Int* 41 :768-77, 1992.
- Ziyadeh FN: Renal tubular basement membrane and collagen type IV in diabetes mellitus. *Kidney Int* 43:1 14-120, 1993.
- Pietravalle P, Morano S, Castina G et al: Charge selectivity of proteinuria in type 1 diabetes explored by IgG subclass clearance. *Diabetes* 40:1685-90, 1991.

- Bangstad HJ, Kofoed-Enevoldsen A, Dahl-Jorgensen K and Hanssen KF: Glomerular charge selectivity and the influente of improved blood glucose control in type | diabetic patients with microalbuminuria. *Diabetologia* 35:1165-69, 1992.
- Kowluru A, Kowluru RA, Solomon S and Martínez L: Protein glycation effects upon protein recognition by the proximal tubule. *Life Science* 50:281-6, 1992.
- 95. Wardle EN and Farr M: Lysozymuria in diabetes. Brit *Medj i:624-5*, 1976.
- 96. Wardle EN: Cytokine growth factors and glomerulonephritis, Nephron 57:257-261, 1991.
- Nahman NS, Leonhart KL, Cosio FG and Hebert CL: Effects of high glucose on cellular proliferation and fibronectin production by cultured human mesangral cells *Kldncy Int* 41:396-402, 1992.
- Kreisberg JI and Ayo SH: The glomerular mesangium in diabetes mellitus. *Kidney Int* 43:109-1 13, 1993.
- Mené P, Pugliese G, Pricci F, Di Mario U, Cinotti GA and Pugliese F: High glucose inhibits cytosolic calcium signaling in cultured rat mesangial cells. *Kidney Int* 43:585-591, 1993.
- Crowley ST, Brownlee M, Edelstein D and Schlondorff D: Effects of non-enzymatic glycosylation mesangial matrix on proliferation of mesangial cells. *Diabetes* 40:540-7, 1991.
- Beyer-Mears A, Ku L and Cohen MP: Glomerular polyol accumulation in diabetes and its prevention by sorbinil. *Diabetes 33:604-7*, 1984.
- Haneda M, Kikkcawa R, Arimura T, Ebata K et al: Glucose inhibits myo-inositol and reduces myo-inositol content in cultured rat glomerular mesangial cells. *Metabolism 39:40-45*, 1990.
- 103. Williams B and Schrier RW: Glucose induced protein kinase C activity regulates arachidonic acid release and prostaglandin production by cultured rat glomerular mesangial cells. J Am Soc Nephrol2:302, 1991.
- 104. Wolf G, Sharma K, Chen V, Ericksen M and Ziyadeh FN: High glucose induced mesangial cell proliferation is reversed by autocrine transforming growth factor beta. *Kidney Int* 42 :647-56, 1992.
- 105. Kikkawa R, Hameda M, Togawa M, Koga D, Kajiwara N and Shigata Y: Differential modulation of mitogenic and metabolic actions of IGF-1 in rat glomerular mesangial cells in high glucose culture. *Diabetologia* 36:276-281, 1993.
- 106. Wasserman J, Santiago A and Ritici V: Interactions of low density lipoproteins with rat mesangial cells. *Kidney Int* 35:1168-74, 1989.
- 107. Shapiro RJ and Xie Y: Mesangial cells modify LDL by a lipoxygenase dependent pathway. J Amer Soc Nephrol 2:778 abst., 1991.
- 108. Chisholm GM, Irwin KC and Penn MS: Lipoprotein oxidation and lipoprotein induced cell injury in diabetes. *Diabetes* 41 (suppl 2):61-66, 1992.
- 109. Coritsidis G, Rifici V, Gupta S and Schlondorff D: Preferential binding of oxidised LDL to rat glomeruli in vivo and cultured mesangial cells in vitro. *Kidney Int 39:858-866*, 1991.
- Nakamura T, Fukui M, Ebihara I, Osada S, Nagaoka I, Tomino Y and Koide H: Messenger RNA expression of growth factors in glomeruli from diabetic rats. *Diabetes* 42:450-56, 1993.
- 111. Silbiger S, Crowley S, Shan Z, Brownlee M, Satriano J and Schlondorff D: Non-enzymatic glycation of mesangial matrix and prolonged exposure of mesangial matrix to elevated glucose reduces collagen synthesis and proteoglycan charge. *Kidney Int* 43:853-864, 1993.
- 112. Rovin BH and Tan LC: LDL stimulates mesangial fibronectin production and chemoattractant expression. *Kidney Int* 43:218-225, 1993.

- 113. Sato H, Suzuki S and Kobayashi H: Immunohistological localization of apolipoproteins in glomeruli in renal diseases, specifically apoB and apoE. *Clin Nephrology* 36:127-134, 1991.
- 114. Doi T, Striker LJ, Cibson CC et al: Glomerular lesions in mice transgenic for growth hormone and IGF-1. Relation between glomerular size and mesangial sclerosis. *Amer J Pathol* 137:541-552, 1990.
- 115. Ziyadeh FN, Chen Y, Davila A, Goldfarb S and Wolf G: Self limited stimulation of mesangial cell growth in high glucose: autocrine activation of TGFP reduces proliferation but increases mesangial matrix. J Amer Soc Nephrology 2:304 abst., 1991.
- 116. Yamamoto T, Nakamura T, Noble N, Ruoslahti E and Border W: Expression of TGFbeta is elevated in human and experimental diabetic nephropathy. *Proc Natl Atad Sci USA* 90:1814-18, 1993.
- 117. Cohen MP y Ziyadeh FN: Amadori glucose adducts modulate mesangial cell growth and collagen gene expression. *Kidney Int* 45:475-489, 1994.
- 118. Agarwal M and Daniels BS: Increased uptake of glycated albumin by glomerular mesangial and epithelial cells in situ is accompanied by augmented local production of hydrogen peroxide. *Clinical Res* 40:179 abst., 1992.
- 119. Craven PA, Studer RK and DeRubertis FR: Impaired nitric oxide dependent cyclic GMP generation in glomeruli from diabetic rats evidence for protein kinase C mediated suppression of cholinergi response. J Clin Invest 93:311-320, 1994.
- 120. Kohan DE: Eicosanois: potential regulators of extracellular matrix formation in the kidney. *J Lab Clin Med* 120:4-6, 1992.