letters to the editor

- donor renal transplantation. Am J Transplant 2005:5:2531-8.
- Ekberg H, Tedesco-Silva H, Demirbas A, Vítko S, Nashan B, Gürkan A, et al. Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med 2007;357:2562-75.
- Flechner SM, Glyda M, Cockfield S, Grinyó J, Legendre Ch, Russ G, et al. The ORION study: comparison of two sirolimus-based regimens versus tacrolimus and mycophenolate mofetil in renal allograft recipients. Am J Transplant 2011;11(8):1633-44.
- 8. Martínez-Mier G, Mendez-Lopez MT, Budar-Fernandez LF, Estrada-Oros J, Franco-Abaroa R, George-Micelli E, et al. Living related kidney transplantation without calcineurin inhibitors: initial ex-

- perience in a Mexican center. Transplantation 2006;82(11):1533-6.
- Martinez-Mier G, Mendez-Lopez Marco T, Budar-Fernandez LF, Avila-Pardo SF, Zamudio-Morales C. Living related kidney transplantation without calcineurin inhibitors: 3-year results of a randomized prospective trial in a Mexican center. (Poster presented at American Transplant Congress 2009, Boston, MA, USA). Am J Transplant 2009;79:s2:500 Abstract 1098
- Levey A, Greene T, Kusek J, Beck Gft MSG. A simplified equation to predict glomerular filtration rate for serum creatinine (Abstract). J Am Soc Nephrol 2000;11:155A.

Gustavo Martínez-Mier¹, Sandro F. Ávila-Pardo¹, Marco T. Méndez-López², Luis F. Budar-Fernández², Benjamín Franco-Ahumada¹, Felipe González-Velázquez³

¹ Servicio de Trasplantes. IMSS UMAE 189 ARC. Hospital Regional de Alta Especialidad de Veracruz (Mexico); ² Servicio de Trasplantes. IMSS UMAE 189 ARC. Veracruz (México); ³ Servicio de Investigación. IMSS UMAE 189 ARC. Veracruz (Mexico).

Correspondence: Gustavo Martínez Mier Servicio de Trasplantes. IMSS UMAE 189 ARC, Hospital Regional de Alta Especialidad de Veracruz. Alacio Pérez, 928-314. Zaragoza, 91910. (Mexico). gmtzmier@hotmail.com martinez.gustavo@transplantver.com.mx

C) BRIEF CASE REPORT

Hepatitis C virus infection, interferon α and lupus; a curious combination

Nefrologia 2014;34(4):534-6

doi:10.3265/Nefrologia.pre2014.Apr.12349

To the Editor,

Drug-induced lupus is a syndrome that shares clinical and analytical characteristics with idiopathic systemic lupus erythematosus and which appears after exposure to certain drugs that induce autoantibody formation.

In 1945, Hoffman described the first case of drug-induced lupus, which involved the antibiotic sulfadiazine as the agent responsible for the condition. Eight years later, in 1953, Morrow et al. published a new case relating to the use of hydralazine¹. Since then, the list of associated drugs has continued to increase and in recent years, biological therapies, such as tumour necrosis factors (TNF) and interferons (IFN), have joined with classic agents, such as procainamide, the aforementioned hydralazine, isoniazid or minocylcine^{2,3,4}.

The mechanism causing this condition has not been fully defined; immunogenetic (certain HLA alleles) and pharmacogenetic (slow acetylator phenotype) factors appear to play an important role in its aethiopathogeny^{1,5}.

In terms of clinical presentation, the most common symptoms are fever, general malaise, muscle pain, joints pain, arthritis, rash and serositis. Unlike idiopathic lupus, kidney, haematologic and nervous system disorders are uncommon⁶. Antihistone antibodies are typical laboratory findings. Hypocomplementaemia and anti-double-stranded DNA, characteristics of idiopathic lupus, tend to be absent, although the latter can test positive in cases of anti-TNF- or IFN-induced lupus (Table 2).

The interval of time between starting the drug and the condition appearing is highly variable, being between 2 weeks and 7 years in the case of IFN- α ; a case developing two months after the drug's suspension has been described⁷.

This condition's prognosis is favourable, such that discontinuation of the

responsible drug is followed by recovery in the majority of cases, in a time frame that can stretch from weeks to months. Until then, non-steroidal anti-inflammatory drugs (NSAID), hydroxychloroquine and low-dose systemic corticosteroids can be used temporarily to control symptoms.

CASE

We present a 51-year-old male, with chronic kidney failure secondary to IgA glomerulonephritis, on a periodic haemodialysis programme, hypertensive, an ex-user of cocaine by inhalation and with chronic hepatitis C virus (HCV) disease, for which reason he was treated with ribavirin and pegylated IFN-α (180µg per week) for 49 weeks, obtaining a sustained viral response. Two weeks after finishing this treatment, he sought consultation due to asthenia and generalised joint pain of 10-15 days evolution, also experiencing in the last 48 hours 38 °C fever and increased right hip pain. In the physical examination he presented pain on moving the aforementioned joint, with neither functional weak-

Table 1. Medicines associated with drug-induced lupus⁴

Medicines definitively associated with drug-induced lupus

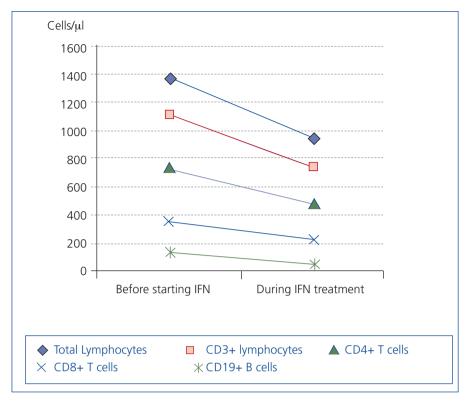
Chlorpromazine Methyldopa Procainamide Isoniazid Minocycline Quinidine Hydralazine

Medicines possibly associated with drug-induced lupus

Acebutolol Phenylbutazone Para-aminosalicylic Acecainide Phenytoin Penicillamine Nalidixic acid Phenopyrazone Penicillin Adalimumab Fluvastatin Perazine Allopurinol Griseofulvin Perphenazine Aminoglutethimide Guanoxan Pvrathiazine Amoproxan Ibuprofen Pvridoxine Anthiomaline Infliximab Practolol Atenolol Interferon-α Promethazine Atorvastatin Interferon-v Propafenone Benoxaprofen Interleukin-2 Propylthiouracil Captopril Labetalol Propranolol Carbamazepine Leuprolide Psoralen Chlorprothixene Levodopa Ouinidine Chlorthalidone Levomepromazine Reserpine Cimetidine Lithium Simvastatin Cinnarazine Lovastatin Sulindac Clonidine Mephyton Sulfadimethoxine Danazol Mesalazine Sulfamethoxypyridazine Diclofenac Methimazole Sulfasalazine Diphenylhydantoin Methysergide **Tetracyclines** Disopyramide Methylthiouracil Tetracin Enalapril Metoprolol Thioamide Spironolactone Metrizamide Thioridazine Streptomycin Minoxidil Timolol Oestrogens Nitrofurantoin Tolazamide Etanercept Nomifensine Tolmetin Ethosuximide Oxyphenisatin Trimethadione Ethylphenacemide Oxprenolol

Table 2. Characteristics of spontaneous and drug-induced lupus⁶

Clinical characteristics	Spontaneous lupus	Drug-induced Iupus
Constitutional symptoms	83%	50%
Arthralgia and arthritis	90%	95%
Pleuropericarditis	50%	50%
Hepatomegaly	25%	25%
Rash	74%	10-20%
Kidney disease	53%	5%
Central nervous system disorder	32%	0%
Haematological abnormalities	Common	Uncommon
Immunological abnormalities		
- ANA	95%	95%
– Anti-RNP	40-50%	20%
– Anti-Sm	20-30%	Rare
Anti-dsDNA	80%	Rare
 Antihistone 	60-80%	90-95%
Complement	Вајо	Normal


ness nor inflammatory signs at this level nor in other joints. The increase of acute-phase reactants (C reactive protein was 9, ESR 120 and neutrophilia) stood out in the laboratory analysis. Blood cultures were taken (which were sterile) and, in order to rule out septic arthritis, an ultrasound of the joint was requested, which did not show signs of arthritis nor joint fluid on being drained and analysed. An echocardiogram ruled out endocarditis. In the study undertaken to rule out tumours/inflammation (bone scan, body gallium scan and chest/ abdominal/pelvic CT scan), degenerative changes were only observed in the scapulohumeral, glenohumeral and coxofemoral joints, with no other significant findings. The autoimmunity test was positive for ANA (IIF) at titres of 1:80 and anti-chromatin (antihistone), with negative anti-dsD-NA and normal complement levels. Other findings were rheumatoid factor 29 and positive cryoglobulins (but with only 0.33% cryocrit). It must be mentioned that one year before, prior to starting treatment with pegylated IFN, autoimmunity was negative and by contrast, cryoglobulins were positive with 4.4% cryocrit. Given these results suggesting drug-induced lupus (related to the pegylated IFN-α that the patient had been receiving until two weeks before due to his HCV), treatment with NSAID, low dose corticosteroids and hydroxychloroquine was started, with significant improvement of symptoms.

Lymphocyte populations were also counted before and during IFN- α therapy, showing significant lymphopenia, with a decrease of both T cells (CD4+ and CD8+) and B cells during treatment (Figure 1).

DISCUSSION

Drug-induced lupus is a condition without established diagnostic criteria. It should be considered in those patients who have received one of the implied drugs for longer than one month and who have compatible symp-

letters to the editor

Figure 1. Evolution of lymphocyte populations following treatment with interferon α . IFN: interferon.

toms and autoimmunity test. The growing appearance of new pharmacological therapies, as well as the important pharmacosurveillance of their adverse effects, make the list of agents associated with this condition increasingly comprehensive. For this reason, high clinical suspicion is key, and therefore timing is of great importance.

For our patient, significant lymphocyte depletion induced by IFN- α should also be noted. Although T cell lymphopenia is an effect already described with the use of IFN- α due to thymus' function alteration, this situation, together with the patient's significant B lymphopenia, would mean a dysregulation of the immune response which could be involved in autoimmunity.

Conflict of interest

The authors declare that they have no conflicts of interest related to the contents of this article.

- Hess E. Drug-related lupus. N Engl J Med 1988;318:1460-2.
- Mongey AB, Hess EV. Drug insight: autoimmune effects of medications what's new? Nat Clin Pract Rheumatol 2008;4:136-44.
- 3. Fritzler MJ. Drugs recently associated with lupus syndromes. Lupus 1994;3(6):455-9.
- Aguirre Zamorano MA, López Pedrera R, Cuadrado Lozano MJ. Lupus inducido por fármacos. Med Clin (Barc) 2010;135(3):124-9.
- Adams LE, Mongey AB. Role of genetic factors in drug-related autoimmunity. Lupus 1994;3(6):443-7.
- Schur PH, Massarotti EM. Lupus erythematosus: clinical evaluation and treatment. New York: Springer; 2012. pp. 211-21.
- Wilson LE, Widman D, Dikman SH, Gorevic PD. Autoimmune disease complicating antiviral therapy for hepatitis C virus infection. Semin Arthritis Rheum 2002;32(3):163-73.
- Beq S, Rozlan S, Pelletier S, Willems B, Bruneau J, Lelievre JD, et al. Altered thymic function during interferon therapy in HCV-infected patients. PLoS One 2012;7(4):e34326.

Pilar Auñón-Rubio,

Eduardo Hernández-Martínez,

Ángel Sevillano-Prieto,

Enrique Morales-Ruiz

Servicio de Nefrología. Hospital Universitario 12 de Octubre. Madrid. (Spain).

Correspondence: Pilar Auñón Rubio

Servicio de Nefrología. Hospital Universitario 12 de Octubre. Madrid. (Spain).

12 de Octubre. Madria. (Spairi).

the.answer.is.blowing.in.the.wind@hotmail.com

Baclofen neurotoxicity in a patient with end-stage chronic renal failure

Nefrologia 2014;34(4):536-8

doi:10.3265/Nefrologia.pre2014.Apr.12320

To the Editor,

Baclofen (4-beta-chlorophenyl-gamma-aminobutyric acid) is a muscle relaxant, used as an antispasmodic in diseases such as multiple sclerosis, medullary trauma and hiccups^{1,2}.

It is mainly excreted through the kidneys (69%-85%) and has a 2 to 6 hr. half life in healthy people. There is a high risk of neurotoxicity in patients with renal failure, especially if administered with <30ml/min glomerular filtration rate, causing episodes of unconsciousness^{3,4}.

Baclofen intoxication in dialysis patients is rare, with very diverse forms of clinical presentation⁵⁻⁹.

We present the clinical case of a patient with baclofen-induced encephalopathy, with atypical clinical evolution; symptoms did not improve with haemodialysis and the patient went into complete remission following the drug's discontinuation.